
Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Programmable Web Project
Part 2: Programmable Web

Spring 2025

WWW technologies (II)

Programmable Web

RESTful Web APIs and HATEOAS

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

The World Wide Web and technologies

2

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

What is the World Wide Web?

•Human consumption (H2M)

•Hypertext

•Uniform API and technologies

•Single client (Web browser)

3

Goal: Distribute data

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

TECHNOLOGIES FOR THE WWW

•Backend: Business logic + data storage (databases)

•Transport protocol: HTTP

•Data serialization languages

4

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Client server model

5

© David Vignoni LGPL license
https://en.wikipedia.org/wiki/Client%E2%80%93server_model#/media/File:Client-server-model.svg

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

DATABASES

6

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Definition

•Databases emerged to solve challenges of storing and managing
huge amounts of data

•A database:
– is a data structure

– stores organized information

– can be easily accessed, managed and updated

•DBMS (Database Managing System) is the software that allows
creating, managing and storing database structures.

– Responsible for data integrity, recovery and access

– Provides a way for extract or modify the data

•There are different ways to model the data in the database
– Lately divided into relational models and non-relational models

7

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

ACID properties

•Atomicity
– Each transaction is atomic.

– If one part of the transaction fails the whole transaction fails and the database is not
modified.

•Consistency
– Databases moves from one valid state to another valid state in each transaction.

– A state is valid if meets all the constraints

• Isolation
– Concurrent access is processed as serial access.

– Not completed transactions might not be visible to other users

•Durability
– Once a transaction is committed it remains in the db.

8

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Relational – Non-relational

•Relational:
– Database model developed by E.F. Codd in 1970

• Codd, Edgar F (June 1970). "A Relational Model of Data for Large Shared
Data Banks"

– Data is represented in terms of tuples (rows), grouped into relations
(tables) that can be linked with each other.

– Developed almost in parallel with SQL language

•Non-Relational:
– Sometimes miscalled Non SQL databases

– Umbrella that gathers different databases that are not relational.

– Data is not organized in related tables.

• Some store objects, some store key-value pairs,
some store documents

– More flexible and scalable

9

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

RDBMS Concepts

•CRUD
– Databases stores data persistently

– There are four basic functions to manage persistent data:

• Create

• Read

• Update

• Delete

•ORM (Object relational mapping)
– To access a relational database from an object oriented language context (PHP, Python,

Java…)

• interface translating relational logic to objects logic is needed.

• Such interface is called Object-relational mapping (ORM, O/RM, and O/R mapping).

10

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Examples - Relational

•Relational databases are still the most commonly used.

•Relational databases are mainly composed by tables.

•A table is formed by zero (empty) or more rows.

•A row consists of one or more fields
– Each has a certain datatype. (columns)

• Some examples are: PostgreSQL, MySQL, SQLite

FirstName Surname PersonalId

John Smith 3321

Jack Johnson 4352

Mary Smith 9807

11

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Examples – Non-relational

– MongoDB

• Scalable, open source database

• JSON based data store: BSON

• Document-oriented database

– Database formed by Collections of Documents

• Example of MongoDB document:

• Example of MongoDB query:

12

{

name: “jim”,

surname: “smith”,

grade: 3

}

db.students.find({grade:{$gt:3}});

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

TRANSPORT PROTOCOL: HTTP

13

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Examples – Non-relational

– MongoDB

• Scalable, open source database

• JSON based data store: BSON

• Document-oriented database

– Database formed by Collections of Documents

• Example of MongoDB document:

• Example of MongoDB query:

14

{

name: “jim”,

surname: “smith”,

grade: 3

}

db.students.find({grade:{$gt:3}});

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HTTP Request parts

•HTTP request example to http://www.cse.oulu.fi

GET / HTTP/1.1

Keep-Alive: 300

Connection: keep-alive

Host: www.cse.oulu.fi

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

The HTTP method. Here, the client
(web browser) is trying to GET some
information from the server
(www.cse.oulu.fi).

The path In this example the

path points to the root of the

host (just /)

REQUEST

LINE

The request headers Since the request does not

have entity, it only contains general and request

specific headers.

The entity-body This particular request has no entity body, which means the envelope is

empty! This is typical for a GET request, where all the information needed to complete the

request is in the path and the headers.

15

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HTTP Response parts

•Response Example: http://www.cse.oulu.fi

HTTP/1.1 200 OK
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Date: Wed, 05 Oct 2011 17:26:03 GMT
Server: Apache/2.2.3 (CentOS)
Vary: Cookie,User-Agent,Accept-Language
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN“ "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<meta name="robots" content="index,follow">
<MainPage - Department of Computer Science and Engineering</title>
…

The HTTP response code. In this case the GET
operation must have succeeded, since the
response code is 200 (“OK”).

The response headers: general,

response and entitity headers
STATUS

LINE

The entity-body. In this case, the entity

body is a HTML document representing

a web page.

16

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HTTP Methods

Defined in RFC2616

17

Method Description

GET Returns the resource representation

HEAD Identical to GET except that the server returns only headers
information in the response

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

DATA SERIALIZATION LANGUAGES

18

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

JSON

•JavaScript Object Notation

•Based on a subset of the JavaScript Language

•Built on two structures:
– A collection of name/value pairs

– An ordered list of values

•These structures can be mapped to structures in almost any programming
language

•Example

19

{"widget": {

"debug": "on",

"window": {

"title": "Sample Konfabulator Widget",

"name": "main_window",

"width": 500,

"height": 500 }

}}

http://www.json.org

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Hypermedia

• Techniques to integrate content in multiple formats (text, image, audio, video…)
in a way that all content is connected and accessible to the user.

“Hypertext […] the simultaneous presentation of information and controls such that
the information becomes the affordance through which the user obtains choices
and selects actions. Machines can follow links when they understand the data
format and the relations type”

Roy Fielding, “A little REST and Relaxation*”

• Hypermedia

– Data

– Hypermedia controls. Indicates what actions could I do next, what are the target
resource to perform the action (link) and how can I perform those actions (http
method / response).

20

* http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Hypermedia (HTML)

Get started

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

21

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

22

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

23

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Hypermedia (Collection+JSON)

{ "collection":

 {

 "version" : "1.0",

 "href" : "http://www.youtypeitwepostit.com/api/",

 "items" : [

 { "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

 "data" : [

 { "name" : "text", "value" : "Test." },

 { "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

],

 "links" : []

 },

 { "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

 "data" : [

 { "name" : "text", "value" : "Hello." },

 { "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

],

 "links" : []

 },

 "template" : {

 "data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

 }

 }

}

24

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATS IN APPENDIX 3: Hypermedia formats

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

CLIENTS

25

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Types of clients

• Human driven clients
– Decisions made by humans. IMPORTANT: how to represent information

to humans

• Crawlers
– It starts following all links iteratively from certain web, executing an

algorithm for each link followed
– E.g. Google

• Monitors
– Checks the state of a resource periodically
– E.g. RSS aggregator

• Scripts
– Simulate an human repeating a determined set of actions (eg. Accessing

sequentially a list of links).

• Agents
– Try to emulate humans who are actively engaged with a problem. Looks

to representation and take autonomous decisions based on states.

26

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Web browser. An Human Driven client.

•A web browser is the client for ALL websites and web applications.

•TECHNOLOGIES:
– HTML-> Markup language which defines the content to be rendered by the browser

– CSS-> Style sheet language used for describing the look and formatting of a document

– JAVASCRIPT-> Scripting language that listen for events triggered by the users, the network or the host
system and execute predefined actions.

– AJAX-> A set of techniques based on Javascript which enable asynchronous interaction between a web
browser and a server

– WebSocket-> Computer communication protocol over TCP that provides full-duplex communication. It
enables for instance, pub/sub.

27

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

PROGRAMMABLE WEB

36

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

What about current Web APIs (RPC or CRUD)?

•Need excessive documentation
– Exhaustive description of required protocol: HTTP methods, URLs …

• Integrating a new API inevitably requires writing custom
software

– Similar applications required totally different clients

•When an application API changes, clients break and have to be
fixed

– For instance a change in the object model in the server or the URL
structure => change in the client.

•Clients need to store a lot of information
– Protocol semantics

– Application semantics

37

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Programmable Web

38

Where is the resource? What is its id?

How can I communicate with the resource?

Which are the resource properties? What
can I do next?

Web:
• Targeted to humans
• One client

Programmable Web:
• Targeted to machines
• Heterogeneous clients
• Multi language

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Web vs Programmable Web

•The Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

•Current differences
– The data is not delivered necessarily for human consumption

(M2M)

– Nowadays an specific client is needed per application at least
until we solve the problems derivated from the semantic
challenge

– A client can be implemented using any programming language
• Data is encapsulated and transmitted using any serialization languages

such asJSON, XML, HTML, YAML

39

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Programmable Web Project
Part 3: RESTful Web APIS

Spring 2025

• ROA Principles

• RESTful Web APIs

• Designing RESTful Web APIs

• Resource Oriented design vs
hypermedia driven design

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

INTRODUCTION TO ROA

41

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

REST (Representational State Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fieldin
g_dissertation.pdf

•Representation
– Resource-oriented: operates with resources.

•State:
– value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and
2) modify the state of the resource

42

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

ROA Introduction

•Resource Oriented Architecture (ROA)

– Architecture for creating Web APIs

– It conforms the REST design principles

– Base technologies: URLs, HTTP and Hypermedia

•Resource :

– Anything important enough to be referenced as a thing itself
• For example: List of the libraries of the city of Oulu, the last software version of

Windows, the relation between two friends, the result of factorizing a number

• Each resource is identified by a unique identifier

•We operate with resources representations by means of

HTTP Requests

– Retrieve or manipulate the state of the resource

45

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

ROA pillars

46

Four properties:

1) Addressability

2) Uniform interface

3) Statlessness

4) Connectedness

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Forum Resource hierarchy

47

forum

CategoryUser

Name

Description

Thread
Name

FirstName LastName Message

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Addressability

•Exposes the interesting aspects of its data set as resources

– Each resource is exposed using its URI

– The URI can be copied, pasted and distributed

– Example:
•http://forum.com/users/user1 refers to the information of the user of the Forum

• I can send this URI by email, and the receiver can access this information by copying this URI into
his/her browser

48

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Addressability in WWW

•The WWW is addressable

49

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Uniform interface (I)

•Every API uses the same methods with the same meanings
– Without a uniform interface, clients have to learn how each API is expected to get and send information

•ROA uses uniform interface provided by HTTP to act over the resource provided in
the URI

50

Method Description

GET Returns the resource representation

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Uniform interface (II)

•PATCH http://tools.ietf.org/html/rfc5789

– Partial edition/modification of a resource

• Client and server must agree on a new media type for patch documents

– RFC 6902: proposed standard patch format for JSON.

• Send a diff of the resource representation. Changes to be done to the resource.
• Content-Type: application/json-patch+json

• [{ "op": "remove", "path": "/a/b/c" }, { "op": "add", "path": "/a/b/c", "value": ["foo", "bar"] },

{ "op": "replace", "path": "/a/b/c", "value": 42 }]

52

http://tools.ietf.org/html/rfc5789

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Uniform interface (III)

• URI: http://forum.com/messages/msg-3

– GET: Retrieves this representation

– DELETE: Removes the message with id «msg-3» from the server

– PUT: Edits the message with id «msg-3». Title, Body, Sent, SenderIP, and Registered could be modified and MUST be
included in the request body (The complete representation is sent and it replaces the old one)

– POST: Add a response to the message with id «msg-3» (subordinate resource). The body of the request should
include the new message

53

<msg:Message messageID="msg-3">

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Body>Does anyone know where Jussi Markkanen used to play before

he came to Edmonton Oilers? He was excellent in the Stanley Cup finals

last season! Too bad they lost...</msg:Body>

<msg:Sent>2005-09-04T19:22:39+02:00</msg:Sent>

<msg:SenderIP>217.119.25.162</msg:SenderIP>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Uniform interface in WWW

•Only GET and POST supported in HTML

•Rest of HTTP methods supported through Javascript

54

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Statelessness (I). State concept.

•Resource state:
– A resource representation that is exchanged between server and

client

– Same for all the clients making simultaneous requests

–Lives in the server

•Application state:
– Snapshot of the entire system at a particular instant, including past

actions and possible future state transitions

– Future possible application states are informed in the resource
representation sent by the server.

– Lives in the client

STATLESSNESS => REFERS TO APPLICATION STATE

55

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Statelessness (II)

•Every HTTP request happens in complete isolation
(STATELESS) -> (application state)

– Server never operates based on information from previous
requests, SERVER DOES NOT STORE APPLICATION STATE

• Eg: In a photo album application if I am in “picture 3” I cannot
request the “next picture” but “picture 4”

– Server considers each client request in isolation and in terms
of the current resource state. However, it provides information
on which are the future states.

– Client handles the application workflow

56

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Statelessness in WWW

•Originally the WWW is statless
– GET an URL always should return same website

•Multiple applications needs state information (login, last accessed, visited pages)
– Cookies

– Session id in URL

57

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Connectedness (I)

•Resource representation MUST contain links to other
resources

•Links must include
– The relation among resources

– Optionally, information on how to access linked resources

58

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Connectedness (II)

59

<msg:Thread>

<msg:Message messageID="msg-7">

<atom:link rel="self" href="http://forum/messages/msg-7"></atom:link>

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

<msg:Message messageID="msg-7" replyTo="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-7"/>

<msg:Title>History</msg:Title>

<atom:link rel="http://forum/rels/parent-message"

href="http://forum/messages/msg-3"/>

<msg:Registered userID="user-1">

<user:Nickname>Mystery</user:Nickname>

<user:Avatar file="avatar_1.png"/>

<atom:link rel="self" href="http://forum/users/Mistery"/>

</msg:Registered>

</msg:Message>

</msg:Thread>

A representation of the message with
id «msg-3»

A representation of user with
nickname «HockeyFan»

A representation of the parent
message of «msg-7»

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Connectedness in WWW

•WWW is connected
– Access and modification of any resource state: following links or filling forms

60

See the latest messages

<form action="http://www.youtypeitwepostit.com/messages"

method="post">

<input type="text" name="message" value=""

required="true" />

<input type="submit" value="Post" />

</form>

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

RESTFUL WEB APIS.
HYPERMEDIA.

61

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Richardson Maturity Model

62

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Richardson Maturity Model

63

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Richardson Maturity Model

64

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Richardson Maturity Model

65

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Richardson Maturity Model

66

R
R

R

R R
R

R

R R
Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not
connected

Service is addressable
and connected

R=Resource

RRR

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Richardson Maturity Model

67

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HATEOAS

70

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HATEOAS

71

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HATEOAS

72

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HATEOAS

Hypermedia format contain:

•Data (state of a representation)

•Hypermedia controls

– The URI of the associated resource (link)

– The relation between both resources

– Usually, protocol information

73

entities" : [

{ "class" : ["switch"],

"href" : "/switches/4",

"rel" : ["item"],

"properties" : { "position" : ["up"] },

"actions" : [

{ "name" : "flip",

"href" : "/switches/4",

"title" : "Flip the mysterious switch.",

"method": "POST"

}

]

}

]

Hypermedia As The Engine Of Application State

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HATEOAS

Hypermedia As The Engine Of Application State

• Ideally, client just need the entry point to a service
– The rest of the URIs (resources) are discovered through the hypermedia

controls

– RESOURCES AS STATE IN A MACHINE DIAGRAM

•Well-designed RESTful APIs permit modifying the server
architecture (e.g. URL structure) and data model without
breaking the clients

74

R

R

R R

R

R

R R

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HATEOAS

75

RESTful Web APIs. Richardson, Amundsen and Ruby

Server job is to describe mazes so clients can engage
with them without dictating any goals

Which are the hypermedia controls?

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Semantic challenge (I)

• In WWW browser does not understand problems domain.
– Humans process information coming from the server and decide on future actions

• In M2M this is not possible:
– Machines NEED to understand the problem domain

– How can we program a computer to make the decisions about which links to follow?

•This is the biggest challenge in web API design using hypermedia: bridging the
semantic gap between understanding a document’s structure and
understanding its semantics.

76

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Semantic Challenge (II)
Semantic gap

•The gap between the structure of a document and its real-
world meaning

Protocol semantics
– What kind of actions a client can perform?

– Usually solved using hypermedia control

Application semantics
– How the representation is explained in terms of real-world concepts.

– Same word might have different meanings in different contexts.
• E.g. time:

– Preparation time if we are using a recipe book

– Workout duration if we are building a gym agenda

– Time of the day if we are using a calendar

77

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Semantic challenge (III)

Two ways of communicating semantics to the client

78

Media Types Profiles

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Media types

•Defines the format of the message

‒Sometimes include protocol and application semantics

•There are some general-purpose media types with
hypermedia support:

– Allows defining the protocol semantics and application
semantics in the API

– HAL, HTML, SIREN, MASON

79

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Media types

80

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

<users>

 <user>

 <nickname>Axel</nickname>

 </user>

 <user>

 <nickname>Bob</nickname>

 </user>

</users>

{users:[

 user:{nickname:”Axel},

 user:{nickname:”Bob”}

]}

 ”Axel”

 ”Bob”

http://myapp/users/axel
http://myapp/users/bob

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Media Types: Collection+JSON

{ "collection":

 {

 "version" : "1.0",

 "href" : "http://www.youtypeitwepostit.com/api/",

 "items" : [

 { "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

 "data" : [

 { "name" : "text", "value" : "Test." },

 { "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

],

 "links" : []

 },

 { "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

 "data" : [

 { "name" : "text", "value" : "Hello." },

 { "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

],

 "links" : []

 },

 "template" : {

 "data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

 }

 }

}

81

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Mason

• Mime-type: application/vnd.mason+json
• Link: https://github.com/JornWildt/Mason

{”name”: ”eeyore”,

 ”color”: ”grey”

"@controls": {

 "self": {

 "href": "http://api.example.org/donkey/eeyore"

 },

 "dk:mood": {

 "title": "Change mood",

 "href": "http://api.example.org/donkey/eeyore/mood",

 "method": "PUT",

 "encoding": "json",

 "schema": {

 "type": "object",

 "properties": {

 "Mood": {"type": "string"},

 "Reason": {"type": "string"}

 }

 }

 }

}

82

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

https://github.com/JornWildt/Mason

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Profile

•Explains the document semantics that are not covered by its
media type.

• A profile describes the exact meaning of each semantic
descriptor

Jenny Gallegos

– “A profile is defined to not alter the semantics of the resource
representation itself, but to allow clients to learn about
additional semantics[…] associated with the resource
representation, in addition to those defined by the media type”
[RFC 6906]

83

• It is provided to the client either defined in a text document
or using a specific description language: ALPS, JSON-LD,
RDF-Schema, XMDP

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Instagram API

84

https://developers.facebook.com/docs/instagram-api/

e.g. Comment Moderation: https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

https://developers.facebook.com/docs/instagram-api/
https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

SUMMARY

87

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Programmable Web

88

Where is the resource? What is its id?

How can I communicate with the resource?

Which are the resource properties? What
can I do next?

Web:
• Targeted to humans
• One client

Programmable Web:
• Targeted to machines
• Heterogeneous clients
• Multi language

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

89

https://apisyouwonthate.com/blog/rest-
and-hypermedia-in-2019

Addressability

Uniform interface

Connectedness

Statelessness

https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019
https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

DESIGN OF RESTFUL WEB APIS USING ROA

91

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

RESTful Web services design steps
92

1. Figure out the data set

2. Split the data set into resources

➢ Create Hierachy

3. Name the resources with URIs

4. Establish the relations and possible actions among resources

5. Expose a subset of the uniform interface

6. Design the resource representations using hypermedia formats
1. Define the media types

2. Define the profiles

7. Define protocol specific attributes
➢ E.g. Headers, response code

8. Consider error conditions: What might go wrong?

Iván Sánchez Milara Programmable Web Project. Spring 2025
.

Hypermedia driven APIs examples

•Skype for business:
– https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia

•Paypal is promoting the use of Hypermedia in their REST API:
– https://developer.paypal.com/docs/api/overview/

– https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/

•Amazon AppStream:
– http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html

•Foxycart:
– https://api.foxycart.com/docs#

•Zalando:
– http://zalando.github.io/restful-api-guidelines/index.html

126

https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia
https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/
http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html
https://api.foxycart.com/docs
http://zalando.github.io/restful-api-guidelines/index.html

	Slide 1: Programmable Web Project Part 2: Programmable Web Spring 2025
	Slide 2: The World Wide Web and technologies
	Slide 3: What is the World Wide Web?
	Slide 4: TECHNOLOGIES FOR THE WWW
	Slide 5: Client server model
	Slide 6: DATABASES
	Slide 7: Definition
	Slide 8: ACID properties
	Slide 9: Relational – Non-relational
	Slide 10: RDBMS Concepts
	Slide 11: Examples - Relational
	Slide 12: Examples – Non-relational
	Slide 13: TRANSPORT PROTOCOL: HTTP
	Slide 14: Examples – Non-relational
	Slide 15: HTTP Request parts
	Slide 16: HTTP Response parts
	Slide 17: HTTP Methods
	Slide 18: Data serialization languages
	Slide 19: JSON
	Slide 20: Hypermedia
	Slide 21: Hypermedia (HTML)
	Slide 22: Hypermedia (HTML)
	Slide 23: Hypermedia (HTML)
	Slide 24: Hypermedia (Collection+JSON)
	Slide 25: CLIENTS
	Slide 26: Types of clients
	Slide 27: Web browser. An Human Driven client.
	Slide 36: Programmable web
	Slide 37: What about current Web APIs (RPC or CRUD)?
	Slide 38: Programmable Web
	Slide 39: Web vs Programmable Web
	Slide 40: Programmable Web Project Part 3: RESTful Web APIS Spring 2025
	Slide 41: Introduction to ROA
	Slide 42: REST (Representational State Transfer)
	Slide 45: ROA Introduction
	Slide 46: ROA pillars
	Slide 47: Forum Resource hierarchy
	Slide 48: Addressability
	Slide 49: Addressability in WWW
	Slide 50: Uniform interface (I)
	Slide 52: Uniform interface (II)
	Slide 53: Uniform interface (III)
	Slide 54: Uniform interface in WWW
	Slide 55: Statelessness (I). State concept.
	Slide 56: Statelessness (II)
	Slide 57: Statelessness in WWW
	Slide 58: Connectedness (I)
	Slide 59: Connectedness (II)
	Slide 60: Connectedness in WWW
	Slide 61: RESTful WEB APIS. Hypermedia.
	Slide 62: Richardson Maturity Model
	Slide 63: Richardson Maturity Model
	Slide 64: Richardson Maturity Model
	Slide 65: Richardson Maturity Model
	Slide 66: Richardson Maturity Model
	Slide 67: Richardson Maturity Model
	Slide 70: HATEOAS
	Slide 71: HATEOAS
	Slide 72: HATEOAS
	Slide 73: HATEOAS
	Slide 74: HATEOAS
	Slide 75: HATEOAS
	Slide 76: Semantic challenge (I)
	Slide 77: Semantic Challenge (II) Semantic gap
	Slide 78: Semantic challenge (III)
	Slide 79: Media types
	Slide 80: Media types
	Slide 81: Media Types: Collection+JSON
	Slide 82: Mason
	Slide 83: Profile
	Slide 84: Instagram API
	Slide 87: Summary
	Slide 88: Programmable Web
	Slide 89
	Slide 91: DESIGN oF RESTFul web APIs uSING ROA
	Slide 92: RESTful Web services design steps
	Slide 126: Hypermedia driven APIs examples

