Ivan Sanchez Milara

Programmable Web Project
Part 2: Programmable Web

Spring 2025

WWW technologies ()
Programmable Web

RESTful Web APIs and HATEOAS

Programmable Web Project. Spring 2025

s\,

g

OULUN
YLIOPISTO

The World Wide Web and technologies

s\,

gl

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

What is the World Wide Web?

Goal: Distribute data

eHuman consumption (H2M)
e Hypertext

eUniform APl and technologies
eSingle client (Web browser)

Programmable Web Project. Spring 2025

UUUUU

TECHNOLOGIES FOR THE WWW

Ivan Sanchez Milara

*Backend: Business logic + data storage (databases)
*Transport protocol: HTTP
*Data serialization languages

Programmable Web Project. Spring 2025

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

Client server model

=

Clients .

;Ii / Server

© David Vignoni LGPL license \ I /
https://en.wikipedia.org/wiki/Client%E2%80%93server_model#/media/File:Client-server-model.svg w
Programmable Web Project. Spring 2025 OULUN

YLIOPISTO

DATABASES

s\,

gl

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

Definition

e Databases emerged to solve challenges of storing and managing
huge amounts of data

e A database:

— is a data structure
— stores organized information
— can be easily accessed, managed and updated

e DBMS (Database Managing System) is the software that allows
creating, managing and storing database structures.
— Responsible for data integrity, recovery and access
— Provides a way for extract or modify the data

e There are different ways to model the data in the database

— Lately divided into relational models and non-relational models

Programmable Web Project. Spring 2025

s\,

g

OULUN
YLIOPISTO

ACID properties

e Atomicity
— Each transaction is atomic.

— If one part of the transaction fails the whole transaction fails and the database is not
modified.

e Consistency
— Databases moves from one valid state to another valid state in each transaction.
— A state is valid if meets all the constraints
e [solation
— Concurrent access is processed as serial access.
— Not completed transactions might not be visible to other users
e Durability
— Once a transaction is committed it remains in the db.

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

Relational — Non-relational

e Relational:

— Database model developed by E.F. Codd in 1970

e Codd, Edgar F (June 1970). "A Relational Model of Data for Large Shared
Data Banks"

— Data is represented in terms of tuples (rows), grouped into relations
(tables) that can be linked with each other.

— Developed almost in parallel with SQL language

e Non-Relational:
— Sometimes miscalled Non SQL databases
— Umbrella that gathers different databases that are not relational.

— Data is not organized in related tables.

e Some store objects, some store key-value pairs,
some store documents

— More flexible and scalable

Programmable Web Project. Spring 2025

s\,

g

OULUN
YLIOPISTO

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

10

RDBMS Concepts

* CRUD

— Databases stores data persistently

—There are four basic functions to manage persistent data:
¢ Create
* Read
e Update
e Delete

e ORM (Object relational mapping)

—To access a relational database from an object oriented language context (PHP, Python,
Java...)

e interface translating relational logic to objects logic is needed.
e Such interface is called Object-relational mapping (ORM, O/RM, and O/R mapping).

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Examples - Relational

e Relational databases are still the most commonly used.
e Relational databases are mainly composed by tables.

e A table is formed by zero (empty) or more rows.

e A row consists of one or more fields

— Each has a certain datatype. (columns)

FirstName Surname Personalid
John Smith 3321
Jack Johnson 4352
Mary Smith 9807

e Some examples are: PostgreSQL, MySQL, SQLite

Ivan Sanchez Milara Programmable Web Project. Spring 2025

11

s\,

g

OULUN
YLIOPISTO

Examples — Non-relational

— MongoDB
e Scalable, open source database
* JSON based data store: BSON
e Document-oriented database
— Database formed by Collections of Documents
e Example of MongoDB document:

{
name: “jim”,
surname: “smith”,
grade: 3

}

e Example of MongoDB query:

db.students.find ({grade: {Sgt:3}1});

Ivan Sanchez Milara Programmable Web Project. Spring 2025

12

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

TRANSPORT PROTOCOL: HTTP

Programmable Web Project. Spring 2025

13

UUUUU

IIIIIIIII

Examples — Non-relational

— MongoDB
e Scalable, open source database
* JSON based data store: BSON
e Document-oriented database
— Database formed by Collections of Documents
e Example of MongoDB document:

{
name: “jim”,
surname: “smith”,
grade: 3

}

e Example of MongoDB query:

db.students.find ({grade: {Sgt:3}1});

Ivan Sanchez Milara Programmable Web Project. Spring 2025

14

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

HTTP Request parts

e HTTP request example to http://www.cse.oulu.fi

/
The HTTP method. Here, the client

(web browser) is trying to GET some The path In this example the
i(nformation flro?_") e S path points to the root of the
www.cse.oulu.fi).

- host (just /)

\

REQUEST ~
L|Q —_[GeET /” HTTRP/1.1
NE Keep-Alive: 300

Connection: keep-alive

Host: www.cse.oulu.fi

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,*;g=0.7

The request headers Since the request does not

have entity, it only contains general and request
specific headers.

The entity-body This particular request has no entity body, which means the envelope is
empty! This is typical for a GET request, where all the information needed to complete the
request is in the path and the headers.

Programmable Web Project. Spring 2025

15

s\,

g

OULUN
YLIOPISTO

HTTP Response parts

e Response Example: http://www.cse.oulu.fi

STATUS
LINE

—

Ivan Sanchez Milara

The HTTP response code. In this case the GET
operation must have succeeded, since the
response code is 200 (“OK”).

The general,

response and entitity headers

HTTP/1.1 200 OK
timeout=15, max=100
Keep-Alive
Wed, 05 Oct 2011 17:26:03 GMT
Apache/2.2.3 (CentOS)
Cookie,User-Agent,Accept-Language
: chunked
text/html; charset=utf-8
<!'DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN“ "http://www.w3.org/TR/htmld/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<meta name="robots" content="index,follow'">
<MainPage - Department of Computer Science and Engineering</title>

(The entity-body. In this case, the entity

body is a HTML document representing
ta web page.

Programmable Web Project. Spring 2025

16

s\,

gl

OULUN
YLIOPISTO

Defined in RFC2616

GET

HEAD

PUT

POST

DELETE

Ivan Sanchez Milara

17

HTTP Methods

Returns the resource representation

Identical to GET except that the server returns only headers
information in the response

Changes the state of the resource

Creates a new resource when the URL is known

Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

Removes a resource from the server
s\,

g

Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

DATA SERIALIZATION LANGUAGES

Programmable Web Project. Spring 2025

18

UUUUU

IIIIIIIII

JSON

e JavaScript Object Notation

e Based on a subset of the JavaScript Language

e Built on two structures:

— A collection of name/value pairs

— An ordered list of values

e These structures can be mapped to structures in almost any programming

object

array

)
S

Fod [vame Loy

Lo

language
e Example ("widget": |
"debug": "on",
"window": {
"title": "Sample Konfabulator Widget",
"name": "main window",
"width": 500,
"height": 500 }
}}
http://www.json.org
Ivan Sanchez Milara Programmable Web Project. Spring 2025

19

s\,

g

OULUN

YLIOPISTO

20

Hypermedia

e Techniques to integrate content in multiple formats (text, image, audio, video...)
in @ way that all content is connected and accessible to the user.

“Hypertext [...] the simultaneous presentation of information and controls such that
the information becomes the affordance through which the user obtains choices
and selects actions. Machines can follow links when they understand the data
format and the relations type”

Roy Fielding, “A little REST and Relaxation*”

e Hypermedia
— Data

— Hypermedia controls. Indicates what actions could | do next, what are the target
resource to perform the action (link) and how can | perform those actions (http
method / response).

\l.
* http://www.slideshare.net/royfielding/a-little-rest-and-relaxation w

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

Hypermedia (HTML)

Get started

You type it, we post it!

Exciting! Amazing!

Get started About this site

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />
<input type="submit" wvalue="Post" />
</form>
Messages
Enter your message below:
Ivan Sanchez Milara Programmable Web Project. Spring 2025

21

s\,

gl

OULUN
YLIOPISTO

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

</form>

Ivan Sanchez Milara

<input type='"text" name="message" value="" required="true" />
<input type="submit" value="Post" />

Messages

Programmable Web Project. Spring 2025

22

s\,

gl

OULUN
YLIOPISTO

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

</form>

Ivan Sanchez Milara

<input type='"text" name="message" value="" required="true" />
<input type="submit" value="Post" />

Messages

Programmable Web Project. Spring 2025

23

s\,

gl

OULUN
YLIOPISTO

Ivan Sanchez Milara

Hypermedia (Collection+JSON)

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

{ "collection":

{

"version" : "1.0",
"href" : "http://www.youtypeitwepostit.com/api/",
"items" : [
{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",
"data" : [
{ "name" : "text", "value" : "Test." },
{ "name" : "date posted", "value" : "2013-04-22T05:33:58.930z" }
]I
"links" : []
}I
{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",
"data" : [
{ "name" : "text", "value" : "Hello." },
{ "name" : "date posted", "value" : "2013-04-20T12:55:59.685z" }
]I
"links" : []
}I
"template" : {
"data" : [
{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

LIST OF HYPERMEDIA FORMATS IN APPENDIX 3: Hypermedia formats

Programmable Web Project. Spring 2025

24

s\,

gl

OULUN
YLIOPISTO

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

Ivan Sanchez Milara

Programmable Web Project. Spring 2025

25

CLIENTS

s\,

gl

OULUN
YLIOPISTO

Ivan Sanchez Milara

26

Types of clients

e Human driven clients

— Decisions made by humans. IMPORTANT: how to represent information
to humans

e Crawlers

— It starts following all links iteratively from certain web, executing an
algorithm for each link followed

— E.g. Google

e Monitors
— Checks the state of a resource periodically
— E.g. RSS aggregator

e Scripts

— Simulate an human repeating a determined set of actions (eg. Accessing
sequentially a list of links).

e Agents

— Try to emulate humans who are actively engaged with a problem. Looks
to representation and take autonomous decisions based on states.

s\,

g

Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

27

Web browser. An Human Driven client.

e A web browser is the client for ALL websites and web applications.

e TECHNOLOGIES:

— HTML-> Markup language which defines the content to be rendered by the browser
— CSS-> Style sheet language used for describing the look and formatting of a document

— JAVASCRIPT-> Scripting language that listen for events triggered by the users, the network or the host
system and execute predefined actions.

— AJAX-> A set of techniques based on Javascript which enable asynchronous interaction between a web
browser and a server

— WebSocket-> Computer communication protocol over TCP that provides full-duplex communication. It
enables for instance, pub/sub.

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

36

PROGRAMMABLE WEB

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

What about current Web APIs (RPC or CRUD)?

e Need excessive documentation

— Exhaustive description of required protocol: HTTP methods, URLs ...

e Integrating a new APl inevitably requires writing custom
software

— Similar applications required totally different clients

e When an application API changes, clients break and have to be
fixed

— For instance a change in the object model in the server or the URL
structure => change in the client.

¢ Clients need to store a lot of information
— Protocol semantics
— Application semantics

Programmable Web Project. Spring 2025

37

s\,

g

OULUN
YLIOPISTO

38

Programmable Web

Which are the resource properties? What
can | do next?

Hypermedia

HTTP | How can | communicate with the resource?

LIRL | Where is the resource? What is its id?

Web: Programmable Web:
e Targeted to humans * Targeted to machines
* One client * Heterogeneous clients

* Multilanguage

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

39

Web vs Programmable Web

eThe Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

e Current differences
— The data is not delivered necessarily for human consumption
(M2M)

— Nowadays an specific client is needed per application at least
until we solve the problems derivated from the semantic
challenge

—A client can be implemented using any programming language

e Data is encapsulated and transmitted using any serialization languages
such asJSON, XML, HTML, YAML

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

Programmable Web Project
Part 3: RESTful Web APIS

Spring 2025

ROA Principles
RESTful Web APIs
Designing RESTful Web APIs

Resource Oriented design vs
hypermedia driven design

Programmable Web Project. Spring 2025

s\,

g

OULUN
YLIOPISTO

41

INTRODUCTION TO ROA

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

42
REST (Representational State Transfer)
e Architectural style proposed by Roy Thomas Fielding.

http://www.ics.uci.edu/~fielding/pubs/dissertation/fieldin
g dissertation.pdf

e Representation
— Resource-oriented: operates with resources.

e State:
—value of all properties of a resource at the certain moment.

e Transfer: State can be transferred

— Clients can:
1) retrieve the state of a resource and
2) modify the state of the resource g V%

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

ROA Introduction

e Resource Oriented Architecture (ROA)

— Architecture for creating Web APIs

— It conforms the REST design principles

— Base technologies: URLs, HTTP and Hypermedia
* Resource:

— Anything important enough to be referenced as a thing itself

e For example: List of the libraries of the city of Oulu, the last software version of
Windows, the relation between two friends, the result of factorizing a number
e Each resource is identified by a unique identifier

e \We operate with resources representations by means of
HTTP Requests

— Retrieve or manipulate the state of the resource

Ivan Sanchez Milara Programmable Web Project. Spring 2025

45

s\,

g

OULUN
YLIOPISTO

46

ROA pillars

Four properties:

1) Addressability

2) Uniform interface
3) Statlessness

4) Connectedness

s\,

g

, . . le W Proi . : 202 OULUN
Ivan Sanchez Milara Programmable Web Project. Spring 2025 VLIOPISTO

47

Forum Resource hierarchy

m Description

S
S~
~~
~
~~o

T S e O

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

48

Addressability

e Exposes the interesting aspects of its data set as resources

—Each resource is exposed using its URI
—The URI can be copied, pasted and distributed

—Example:
*http://forum.com/users/userl refersto the information of the user of the Forum

e | can send this URI by email, and the receiver can access this information by copying this URI into
his/her browser

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

49

Addressability in W

e The WWW is addressable

€ Google - Google Chrome.

€« C | [httpsy//www.googlefi

Gmail Images

Google

Suomi

4
Google Search I'm Feeling Lucky
wi_ AT&T 3G 9:41 AM 97% .
= = Write: Link
Google fi offered in: suomi svenska
WEsend | o Speling v B Atach ~ @ Security
From: lvén Sénchez Milara <ivan@ee.oulufi>
- To: pp-course@es.oulufi
Thanks!!! Subject: Link
i e ——a
BodyTet v Variable Width L
www.google.fi

Ivén Sénchez Milara.

Research Scientist. PhD Candidate.
Room TS354

Center for Ubiquioutous Computer
University of Oulu. Finland.

- [mlsave |~

ivan@ee.oulufi -

AA[AAA|ELS

Office phone:(+358)294487568
wuni . ubicomp . £

Programmable Web Project. Spring 2025

s\,

OULUN
YLIOPISTO

50

Uniform interface (l)

e Every APl uses the same methods with the same meanings

— Without a uniform interface, clients have to learn how each APl is expected to get and send information

e ROA uses uniform interface provided by HTTP to act over the resource provided in

the URI

GET

PUT

POST

DELETE

Ivan Sanchez Milara

Returns the resource representation

Changes the state of the resource

Creates a new resource when the URL is known

Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

Removes a resource from the server P

g

Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

52

Uniform interface (ll)

¢ PATCH nhttp://tools.ietf.org/html/rfc5789

— Partial edition/modification of a resource

e Client and server must agree on a new media type for patch documents

— RFC 6902: proposed standard patch format for JSON.

e Send a diff of the resource representation. Changes to be done to the resource.

« Content-Type: application/json-patch+json

° [{ uop" . uremoven , "path" : "/a/b/cu } , { "Op" : lladd" , "path" . n/a/b/cn , "Value" . [" fOO" , "bar"] } ,
{ "op": "replace", "path": "/a/b/c", "value": 42 }]

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

http://tools.ietf.org/html/rfc5789

53

Uniform interface (lll)

e URI: http://forum.com/messages/msg-3

<msg:Message messageID="msg-3">
<msg:Title>Edmonton's goalie</msg:Title>
<msg:Body>Does anyone know where Jussi Markkanen used to play before
he came to Edmonton Oilers? He was excellent in the Stanley Cup finals
last season! Too bad they lost...</msg:Body>
<msg:Sent>2005-09-04T19:22:39+02:00</msg:Sent>
<msg:SenderIP>217.119.25.162</msg:SenderIP>
<msg:Registered userID="user-7">
<user :Nickname>HockeyFan</user :Nickname>
<user:Avatar file="avatar_ 7.jpg"/>
<atom:link rel="self" href="http://forum/users/HockeyFan"/>
</msg:Registered>
</msg:Message>

— GET: Retrieves this representation
— DELETE: Removes the message with id «msg-3» from the server

— PUT: Edits the message with id «msg-3». Title, Body, Sent, SenderlP, and Registered could be modified and MUST be
included in the request body (The complete representation is sent and it replaces the old one)

— POST: Add a response to the message with id «msg-3» (subordinate resource). The body of the request should
include the new message

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Uniform interface in WWW

e Only GET and POST supported in HTML

e Rest of HTTP methods supported through Javascript

Ivan Sanchez Milara

Programmable Web Project. Spring 2025

54

s\,

g

OULUN
YLIOPISTO

55
Statelessness (l). State concept.

e Resource state:

— A resource representation that is exchanged between server and
client

—Same for all the clients making simultaneous requests
—Lives in the server

e Application state:

—Snapshot of the entire system at a particular instant, including past
actions and possible future state transitions

—Future possible application states are informed in the resource
representation sent by the server.

—Lives in the client

s\,

STATLESSNESS => REFERS TO APPLICATION STATE [l-l\:’-l]

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Statelessness (lI)

eEvery HTTP request happens in complete isolation
(STATELESS) -> (application state)

—Server never operates based on information from previous
requests, SERVER DOES NOT STORE APPLICATION STATE

e £g: In a photo album application if | am in “picture 3” | cannot
request the “next picture” but “picture 4”

—Server considers each client request in isolation and in terms
of the current resource state. However, it provides information
on which are the future states.

—Client handles the application workflow

Ivan Sanchez Milara Programmable Web Project. Spring 2025

56

s\,

g

OULUN
YLIOPISTO

57

Statelessness in WWW

e Originally the WWW is statless

— GET an URL always should return same website

e Multiple applications needs state information (login, last accessed, visited pages)

— Cookies
— Session id in URL

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

58

Connectedness (l)

e Resource representation MUST contain links to other
resources

e Links must include
—The relation among resources
— Optionally, information on how to access linked resources

R=Resource @
@ %5 0 9

Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not Service is addressable
connected and connected

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

Connectedness (ll)

[A representation of the message with

<msg:Thread> id «msg-3»
<msg:Message messagelD="msg-7">
<atom:link rel="self" href="http://forum/messages/msg-7"></atom:link>
<msg:Title>Edmonton's goalie</msg:Title>
<msg:Registered userID="user-7">
<user:Nickname>HockeyFan</user:Nickname>
<user:Avatar file="avatar 7.jpg"/>
<atom:1link rel="self" href="http://forum/users/HockeyFan"/>
</msg:Registered>
</msg:Message>
<msg:Message messagelD="msg-7" replyTo="msg-3">
<atom:1link rel="self" href="http://forum/messages/msg-7"/>
<msg:Title>History</msg:Title>
<atom:1link rel="http://forum/rels/parent-message"
href="http://forum/messages/msg-3"/>
<msg:Registered userID="user-1">
<user:Nickname>Mystery</user:Nickname>
<user:Avatar file="avatar 1.png"/>
<atom:1link rel="self" href="http://forum/users/Mistery"/>
</msg:Registered>
</msg:Message>
</msqg:Thread>

y
A representation of user with

nickname «HockeyFan»

A representation of the parent
message of «msg-7»

Programmable Web Project. Spring 2025

59

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

Connectedness in WWW

e WWW is connected

— Access and modification of any resource state: following links or filling forms

See the latest messages

<form action="http://www.youtypeitwepostit.com/messages"
method="post">

<input type="text" name="message" value=""
required="true" />

<input type="submit" wvalue="Post" />
</form>

Programmable Web Project. Spring 2025

60

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

Programmable Web Project. Spring 2025

61

RESTFUL WEB APIS.
HYPERMEDIA.

UUUUU
IIIIIIIII

Ivan Sanchez Milara

Richardson Maturity Model

f.—_-\
Glory of REST ,

Level 3: Hypermedia Controls

Level 1: Resources

Level 0: The Swamp of POX

Programmable Web Project. Spring 2025

62

s\,

gl

OULUN
YLIOPISTO

63

Richardson Maturity Model

Glory of REST Y

Level 0: The Swamp of POX

R=Resource

Service exposes everything

. N e
under single URI
not addressable, not connected E\'T
Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN

YLIOPISTO

64

Richardson Maturity Model

Glory of REST Y

Level 1: Resources

Level 0: The Swamp of POX

Service is addressable, but not N,
connected [E"']
Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN

YLIOPISTO

Ivan Sanchez Milara

Richardson Maturity Model

Glory of REST Y

Level 1: Resources

Level 0: The Swamp of POX

® ®

Service is addressable, but not
connected

Programmable Web Project. Spring 2025

65

s\,

gl

OULUN
YLIOPISTO

Ivan Sanchez Milara

Richardson Maturity Model

Glory of REST Y

 Level 3: Hypermedia Controls |

Level 1: Resources

Level 0: The Swamp of POX

Service is addressable
and connected

Programmable Web Project. Spring 2025

66

s\,

gl

OULUN
YLIOPISTO

Ivan Sanchez Milara

Richardson Maturity Model
Glory of REST

Level 3: Hypermedia Controls

Level 1: Resources

Level 0: The Swamp of POX

Programmable Web Project. Spring 2025

f_--'\
e

67

s\,

gl

OULUN
YLIOPISTO

70

HATEOAS
Hypermedia As The Engine Of Application State

A

A BLACK B/RROR rvenr

28 DEC

s\,

gl

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

HATEOAS
Hypermedia As The Engine Of Application State

Programmable Web Project. Spring 2025

71

s\,

g

OULUN
YLIOPISTO

HATEOAS
Hypermedia As The Engine Of Application State

SN)
()
/7 T~ »

\554. Parfact Society —
T
PR 98 Travel the World (End)
S)
LAVENDER = NODE N —
S gy
T~

< ()
— G - THE CAVE OF TIME

prem— NARRATIVE MAP

17 —{ cavemen

=g
AN

&

100 W AL B ARANEAM MK

/H () e (Gwuag) (HOOSEYOUR OWN ADVENTURE

o)

ro— (o)

YOU'RE THE STAR OF THLE STORY!
CHOOSL FROM 40 POSSIBLE ENDINGS

THE CAVE .
OF TIME =T

BY EDWAKD PACKARD b))

Home among the Cavemnen
g5 (The End)
\54“\\—‘-

_— g3 ——| Primitive People
R

s —»

5%

Merrie England

o o))
/” > heEna)

ILLUSTRATED BY UL GRANGEK

Ivan Sanchez Milara

Programmable Web Project. Spring 2025

72

s\,

OULUN
YLIOPISTO

HATEOAS
Hypermedia As The Engine Of Application State

Hypermedia format contain: entities” : |

{ "class" : ["switch"],
"href" : "/switches/4",
"rel" : ["item"],
. "properties" : { "position" : ["up"] 1},
e Data (state of a representation) "actions” : |
{ "name" : "flip",
"href" : "/switches/4",

"title" : "Flip the mysterious switch.",

"method": "POST"

e Hypermedia controls)
— The URI of the associated resource (link)

— The relation between both resources

— Usually, protocol information

Ivan Sanchez Milara Programmable Web Project. Spring 2025

73

s\,

g

OULUN
YLIOPISTO

74

HATEOAS
Hypermedia As The Engine Of Application State

e |deally, client just need the entry point to a service

—The rest of the URIs (resources) are discovered through the hypermedia
controls

— RESOURCES AS STATE IN A MACHINE DIAGRAM

e Well-designed RESTful APIs permit modifying the server
architecture (e.g. URL structure) and data model without
breaking the clients e Q

e %ye T

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Ivan Sanchez Milara

HATEOAS

<maze version="1.0">

«cell href="/cells/M" rel="current™=
<title=The Entrance Hallway</title=
<link rel="east" href="/cells/N" />
<link rel="west" href="/cells/L" />

</cell=

< /maze=

Which are the hypermedia controls?

Entrance

RESTful Web APIs. Richardson, Amundsen and Ruby

Server job is to describe mazes so clients can engage
with them without dictating any goals

Programmable Web Project. Spring 2025

75

s\,

gl

OULUN
YLIOPISTO

76

Semantic challenge ()

e In WWW browser does not understand problems domain.

— Humans process information coming from the server and decide on future actions

e|n M2M this is not possible:

— Machines NEED to understand the problem domain
— How can we program a computer to make the decisions about which links to follow?

e This is the biggest challenge in web API design using hypermedia: bridging the
semantic gap between understanding a document’s structure and
understanding its semantics.

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

Semantic Challenge (lI)
Semantic gap

e The gap between the structure of a document and its real-
world meaning

Protocol semantics
— What kind of actions a client can perform?
— Usually solved using hypermedia control

Application semantics

— How the representation is explained in terms of real-world concepts.

— Same word might have different meanings in different contexts.
e E.g. time:
— Preparation time if we are using a recipe book
— Workout duration if we are building a gym agenda
—Time of the day if we are using a calendar

Ivan Sanchez Milara Programmable Web Project. Spring 2025

77

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

Semantic challenge (lll)

Two ways of communicating semantics to the client

Media Types PrOfiles

Programmable Web Project. Spring 2025

78

s\,

g

OULUN
YLIOPISTO

Media types

e Defines the format of the message

—Sometimes include protocol and application semantics

e There are some general-purpose media types with
hypermedia support:

—Allows defining the protocol semantics and application
semantics in the API

—HAL, HTML, SIREN, MASON

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

Ivan Sanchez Milara Programmable Web Project. Spring 2025

79

s\,

g

OULUN
YLIOPISTO

80
Media types

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

<users>
<user>
<nickname>Axel</nickname>
</user>
<user>
<nickname>Bob</nickname>
</user>
</users>
{users: |
user: {nickname:”Axel},
user: {nickname:”Bob”}
11}

"Axel”</1li>
"Bob”</1i>

s\,
LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats ['-'\:’-']
Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

http://myapp/users/axel
http://myapp/users/bob

Ivan Sanchez Milara

Media Types: Collection+JSON

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

{ "collection":

{

"version" : "1.0",
"href" : "http://www.youtypeitwepostit.com/api/",
"items" : [
{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",
"data" : [
{ "name" : "text", "value" : "Test." },
{ "name" : "date posted", "value" : "2013-04-22T05:33:58.930z" }
]I
"links" : []
}I
{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",
"data" : [
{ "name" : "text", "value" : "Hello." },
{ "name" : "date posted", "value" : "2013-04-20T12:55:59.685z" }
]I
"links" : []
}I
"template" : {
"data" : [
{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

Programmable Web Project. Spring 2025

81

s\,

gl

OULUN
YLIOPISTO

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

Ivan Sanchez Milara

Mason

e Mime-type: application/vnd.mason+json
e Link: https://github.com/JornWildt/Mason

{”"name”: "eeyore”,
"color”: "grey”
"@Qcontrols": {
"self": {
"href": "http://api.example.org/donkey/eeyore"
}I
"dk:mood": {
"title": "Change mood",
"href": "http://api.example.org/donkey/eeyore/mood",
"method": "PUT",
"encoding”": "json",
"schema": {
"type": "object",
"properties": {
"Mood": {"type": "string"},
"Reason": {"type": "string"}

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

Programmable Web Project. Spring 2025

82

s\,

g

OULUN
YLIOPISTO

https://github.com/JornWildt/Mason

83

Profile

e Explains the document semantics that are not covered by its

media type.
e A profile describes the exact meaning of each semantic

descriptor
Jenny Gallegos

—“A profile is defined to not alter the semantics of the resource
representation itself, but to allow clients to learn about
additional semantics/...] associated with the resource
representation, in addition to those defined by the media type”

[RFC 6906]

* |tis provided to the client either defined in a text document
or using a specific description language: ALPS, JSON-LD,
RDF-Schema, XMDP [\,éﬁ

OULUN

Programmable Web Project. Spring 2025
YLIOPISTO

Ivan Sanchez Milara

Instagram

Instagram Platform On This Page

Reference

Instagram Graph API
Instagram Basic Display
API

Overview
Access Tokens
Get Started
Guides

Endpoint Description

Reference

Access Token Get the Authorization Window.
Error Codes

Me

Exchange an Authorization Code for a short-lived Instagram User Access Token.

Media Exchange a short-lived Instagram User Access Token for a long-lived Instagram

Oauth Access Token User Access Token.

Oauth Authorize

Refresh a long-lived Instagram User Access Token
Refresh Access Token

User
Changelog
Sharing to Feed Authorization Window
Sharing to Stories
oEmbed Endpoint Description
Embed Button
Get the Authorization Window.

Business Login for
Instagram

Media

Endpoint Description
Get fields and edges on an image, video, or album

Get a list of images and videos on an album

Get a list of images, videos, or albums on a User.

https://developers.facebook.com/docs/instagram-api/

e.g. Comment Moderation: https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

Ivan Sanchez Milara Programmable Web Project. Spring 2025

84

s\,

OULUN
YLIOPISTO

https://developers.facebook.com/docs/instagram-api/
https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

87

SUMMARY

s\,

gl

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

88

Programmable Web

Which are the resource properties? What
can | do next?

Hypermedia

HTTP | How can | communicate with the resource?

LIRL | Where is the resource? What is its id?

Web: Programmable Web:
e Targeted to humans * Targeted to machines
* One client * Heterogeneous clients

* Multilanguage

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

RPC

Hitting the same endpoint with GET or
POST or maybe a combination of
both, ususally firing around a method
and a bunch of arguments. Very few
shared conventions from one RPC
implementation to another.

Uniform interface
#2: HTTP Methods

Resources can declare their own
cacheability now. Resources made things
unique, methods make semantics clear.
GET can be cached, POST cannot be, etc.

Automatic retries now possible, retrying on a
GET = fine, POST = bad, PUT = fine, etc.

No need to invent naming conventions for
partial and full updates, can simply use
PATCH & PUT

The gRPC "HTTP Bridge" gets here.

Ivan Sanchez Milara

GET
POST PUT
PATCH
DELETE

Richardson Maturity Model

Phil Sturgeon | May 20, 2019

In the world of HTTP APIs, a REST is made from
layers of abstraction on top of RPC to solve certain
problems. Each layer builds on the one before it.

Addressability

Statelessness

#1: Resources

Every conceptual thing on the Internet
now has its own Uniform Resource
Identifier, like a nickname for a
resource or piece of functionality,
which can be referred to later.

Connectedness

#3: Hypermedia Controls

Instead of an API being just a data store, you
turn it into a state machine, providing next
available actions via "links" , which are
relevant for that resource at that moment,
instead of forcing clients to interpret state
from raw data.

This makes clients thinner, and less prone to
inconsistencies from state inferrance
mismatches.

REST

Q Just kidding you had a REST API the second
L7y you implemented Step 3.
: Now go make your SDK better so clients can
leverage it, and keep improving and
evolving your API.

Programmable Web Project. Spring 2025

https://apisyouwonthate.com/blog/rest-

and-hypermedia-in-2019

89

s\,

gl

OULUN
YLIOPISTO

https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019
https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019

Ivan Sanchez Milara

DESIGN OF RESTFUL WEB APIS USING ROA

Programmable Web Project. Spring 2025

91

UUUUU

IIIIIIIII

Ivan Sanchez Milara

92

RESTful Web services design steps

1. Figure out the data set

N

o U~ W

Split the data set into resources
» Create Hierachy

Name the resources with URIs
Establish the relations and possible actions among resources
Expose a subset of the uniform interface

Design the resource representations using hypermedia formats
1. Define the media types
2. Define the profiles

. Define protocol specific attributes

» E.g. Headers, response code

. Consider error conditions: What might go wrong?

s\,

g

Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

126

Hypermedia driven APIs examples

e Skype for business:

— https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia

e Paypal is promoting the use of Hypermedia in their REST API:

— https://developer.paypal.com/docs/api/overview/

— https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/

e Amazon AppStream:

— http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html

¢ Foxycart:
— https://api.foxycart.com/docs#

e Zalando:
— http://zalando.github.io/restful-api-guidelines/index.html

s\,

gl

Ivan Sanchez Milara Programmable Web Project. Spring 2025 OULUN
YLIOPISTO

https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia
https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/
http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html
https://api.foxycart.com/docs
http://zalando.github.io/restful-api-guidelines/index.html

	Slide 1: Programmable Web Project Part 2: Programmable Web Spring 2025
	Slide 2: The World Wide Web and technologies
	Slide 3: What is the World Wide Web?
	Slide 4: TECHNOLOGIES FOR THE WWW
	Slide 5: Client server model
	Slide 6: DATABASES
	Slide 7: Definition
	Slide 8: ACID properties
	Slide 9: Relational – Non-relational
	Slide 10: RDBMS Concepts
	Slide 11: Examples - Relational
	Slide 12: Examples – Non-relational
	Slide 13: TRANSPORT PROTOCOL: HTTP
	Slide 14: Examples – Non-relational
	Slide 15: HTTP Request parts
	Slide 16: HTTP Response parts
	Slide 17: HTTP Methods
	Slide 18: Data serialization languages
	Slide 19: JSON
	Slide 20: Hypermedia
	Slide 21: Hypermedia (HTML)
	Slide 22: Hypermedia (HTML)
	Slide 23: Hypermedia (HTML)
	Slide 24: Hypermedia (Collection+JSON)
	Slide 25: CLIENTS
	Slide 26: Types of clients
	Slide 27: Web browser. An Human Driven client.
	Slide 36: Programmable web
	Slide 37: What about current Web APIs (RPC or CRUD)?
	Slide 38: Programmable Web
	Slide 39: Web vs Programmable Web
	Slide 40: Programmable Web Project Part 3: RESTful Web APIS Spring 2025
	Slide 41: Introduction to ROA
	Slide 42: REST (Representational State Transfer)
	Slide 45: ROA Introduction
	Slide 46: ROA pillars
	Slide 47: Forum Resource hierarchy
	Slide 48: Addressability
	Slide 49: Addressability in WWW
	Slide 50: Uniform interface (I)
	Slide 52: Uniform interface (II)
	Slide 53: Uniform interface (III)
	Slide 54: Uniform interface in WWW
	Slide 55: Statelessness (I). State concept.
	Slide 56: Statelessness (II)
	Slide 57: Statelessness in WWW
	Slide 58: Connectedness (I)
	Slide 59: Connectedness (II)
	Slide 60: Connectedness in WWW
	Slide 61: RESTful WEB APIS. Hypermedia.
	Slide 62: Richardson Maturity Model
	Slide 63: Richardson Maturity Model
	Slide 64: Richardson Maturity Model
	Slide 65: Richardson Maturity Model
	Slide 66: Richardson Maturity Model
	Slide 67: Richardson Maturity Model
	Slide 70: HATEOAS
	Slide 71: HATEOAS
	Slide 72: HATEOAS
	Slide 73: HATEOAS
	Slide 74: HATEOAS
	Slide 75: HATEOAS
	Slide 76: Semantic challenge (I)
	Slide 77: Semantic Challenge (II) Semantic gap
	Slide 78: Semantic challenge (III)
	Slide 79: Media types
	Slide 80: Media types
	Slide 81: Media Types: Collection+JSON
	Slide 82: Mason
	Slide 83: Profile
	Slide 84: Instagram API
	Slide 87: Summary
	Slide 88: Programmable Web
	Slide 89
	Slide 91: DESIGN oF RESTFul web APIs uSING ROA
	Slide 92: RESTful Web services design steps
	Slide 126: Hypermedia driven APIs examples

