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The World Wide Web and technologies
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What is the World Wide Web?

•Human consumption (H2M)

•Hypertext

•Uniform API and technologies

•Single client (Web browser)
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Goal: Distribute data
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TECHNOLOGIES FOR THE WWW

•Backend: Business logic + data storage (databases)

•Transport protocol: HTTP

•Data serialization languages

4
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Client server model
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© David Vignoni LGPL license
https://en.wikipedia.org/wiki/Client%E2%80%93server_model#/media/File:Client-server-model.svg
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DATABASES
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Definition

•Databases emerged to solve challenges of  storing and managing 
huge amounts of data

•A database:
– is a data structure 

– stores organized information

– can be easily accessed, managed and updated

•DBMS (Database Managing System) is the software that allows 
creating, managing and storing database structures.

– Responsible for  data integrity, recovery and access 

– Provides a way for extract or modify the data

•There are different ways to model the data in the database
– Lately divided into relational models and non-relational models

7
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ACID properties

•Atomicity
– Each transaction is atomic.

– If one part of the transaction fails the whole transaction fails and the database is not 
modified.

•Consistency
– Databases moves from one valid state to another valid state in each transaction.

– A state is valid if meets all the constraints

• Isolation
– Concurrent access is processed as serial access.

– Not completed transactions might not be visible to other users

•Durability
– Once a transaction is committed it remains in the db.

8
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Relational – Non-relational

•Relational: 
–  Database model developed by E.F. Codd in 1970

• Codd, Edgar F (June 1970). "A Relational Model of Data for Large Shared 
Data Banks"

– Data is represented in terms of tuples (rows), grouped into relations 
(tables) that can be linked with each other.

– Developed almost in parallel with SQL language

•Non-Relational:
–  Sometimes miscalled Non SQL databases

–  Umbrella that gathers different databases that are not relational.

–  Data is not organized in related tables. 

• Some store objects, some store key-value pairs, 
some store documents

– More flexible and scalable
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http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
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RDBMS Concepts

•CRUD
– Databases stores data persistently

– There are four basic functions to manage persistent data: 

• Create

• Read

• Update

• Delete

•ORM (Object relational mapping)
– To access a relational database from an object oriented language context (PHP, Python, 

Java…) 

• interface translating relational logic to objects logic is needed.

• Such interface is called Object-relational mapping (ORM, O/RM, and O/R mapping).

10
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Examples - Relational

•Relational databases are still the most commonly used.

•Relational databases are mainly composed by tables.

•A table is formed by zero (empty) or more rows.

•A row consists of one or more fields
– Each has a certain datatype. (columns)

•  Some examples are: PostgreSQL, MySQL, SQLite

FirstName Surname PersonalId

John Smith 3321

Jack Johnson 4352

Mary Smith 9807

11
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Examples – Non-relational

– MongoDB

• Scalable, open source database

• JSON based data store: BSON

• Document-oriented database

– Database formed by Collections of Documents

• Example of MongoDB document:

• Example of MongoDB query:

12

{ 

name: “jim”,

surname: “smith”,

grade: 3

}

db.students.find({grade:{$gt:3}});
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TRANSPORT PROTOCOL: HTTP

13
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Examples – Non-relational

– MongoDB

• Scalable, open source database

• JSON based data store: BSON

• Document-oriented database

– Database formed by Collections of Documents

• Example of MongoDB document:

• Example of MongoDB query:
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{ 

name: “jim”,

surname: “smith”,

grade: 3

}

db.students.find({grade:{$gt:3}});
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HTTP Request parts

•HTTP request example to http://www.cse.oulu.fi

GET / HTTP/1.1 

Keep-Alive: 300

Connection: keep-alive

Host: www.cse.oulu.fi

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

The HTTP method. Here, the client 
(web browser) is trying to GET some 
information from the server 
(www.cse.oulu.fi).

The path In this example the 

path points to the root of the 

host (just /)

REQUEST

LINE

The request headers Since the request does not 

have entity, it only contains general and request 

specific headers.

The entity-body This particular request has no entity body, which means the envelope is 

empty! This is typical for a GET request, where all the information needed to complete the 

request is in the path and the headers.

15
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HTTP Response parts

•Response Example: http://www.cse.oulu.fi

HTTP/1.1 200 OK
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Date: Wed, 05 Oct 2011 17:26:03 GMT
Server: Apache/2.2.3 (CentOS)
Vary: Cookie,User-Agent,Accept-Language
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN“ "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<meta name="robots" content="index,follow">
<MainPage - Department of Computer Science and Engineering</title>
…

The HTTP response code. In this case the GET 
operation must have succeeded, since the 
response code is 200 (“OK”). 

The response headers: general, 

response and entitity headers 
STATUS

LINE

The entity-body. In this case, the entity 

body is a HTML document representing 

a web page.

16
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HTTP Methods

Defined in RFC2616

17

Method Description

GET Returns the resource representation

HEAD Identical to GET except that the server returns only headers 
information in the response 

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server
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DATA SERIALIZATION LANGUAGES

18
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JSON

•JavaScript Object Notation

•Based on a subset of the JavaScript Language

•Built on two structures:
– A collection of name/value pairs

– An ordered list of values

•These structures can be mapped to structures in almost any programming 
language

•Example

19

{"widget": { 

"debug": "on", 

"window": { 

"title": "Sample Konfabulator Widget",

"name": "main_window",

"width": 500,

"height": 500 }

}}

http://www.json.org
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Hypermedia

• Techniques to integrate content in multiple formats (text, image, audio, video…) 
in a way that all content is connected and accessible to the user.

“Hypertext […] the simultaneous presentation of information and controls such that 
the information becomes the affordance through which the user obtains choices 
and selects actions. Machines can follow links when they understand the data 
format and the relations type”

Roy Fielding, “A little REST and Relaxation*”

• Hypermedia 

– Data

– Hypermedia controls. Indicates what actions could I do next,  what are the target 
resource to perform the action (link) and how can I perform those actions (http 
method / response).

20

* http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

http://www.slideshare.net/royfielding/a-little-rest-and-relaxation
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Hypermedia (HTML)

<a href="http://www.youtypeitwepostit.com/messages/">

Get started

</a>

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>

21
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Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>
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Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

<input type="text" name="message" value="" required="true" />

<input type="submit" value="Post" />

</form>
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Hypermedia (Collection+JSON)

{ "collection":

    {

        "version" : "1.0",

        "href" : "http://www.youtypeitwepostit.com/api/",

        "items" : [

          { "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

 "data" : [

     { "name" : "text", "value" : "Test." },

     { "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

 ],

 "links" : []

           },

          { "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

 "data" : [

     { "name" : "text", "value" : "Hello." },

                { "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

 ],

 "links" : []

           },

        "template" : {

 "data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

 ]

         }

    }

}

24

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATS IN APPENDIX 3: Hypermedia formats

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/
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CLIENTS

25
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Types of clients

• Human driven clients
– Decisions made by humans. IMPORTANT: how to represent information 

to humans

• Crawlers
– It starts following all links iteratively from certain web, executing an 

algorithm for each link followed
– E.g. Google

• Monitors
– Checks the state of a resource periodically
– E.g. RSS aggregator

• Scripts
– Simulate an human repeating a determined set of actions (eg. Accessing 

sequentially a list of links).

• Agents
– Try to emulate humans who are actively engaged with a problem. Looks 

to representation and take autonomous decisions based on states.

26
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Web browser. An Human Driven  client.

•A web browser is the client for ALL websites and web applications. 

•TECHNOLOGIES:
– HTML-> Markup language which defines the content to be rendered by the browser 

– CSS-> Style sheet language used for describing the look and formatting of a document 

– JAVASCRIPT-> Scripting language that listen for events triggered by the users, the network or the host 
system and execute predefined actions.

– AJAX-> A set of techniques based on Javascript which enable asynchronous interaction between a web 
browser and a server

– WebSocket-> Computer communication protocol over TCP that provides full-duplex communication. It 
enables for instance, pub/sub.

27
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PROGRAMMABLE WEB

36
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What about current Web APIs (RPC or CRUD)?

•Need excessive documentation
– Exhaustive description of required protocol: HTTP methods, URLs …

• Integrating a new API inevitably requires writing custom 
software

– Similar applications required totally different clients

•When an application API changes, clients break and have to be 
fixed

– For instance a change in the object model in the server or the URL 
structure => change in the client.

•Clients need to store a lot of information
– Protocol semantics

– Application semantics

37
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Programmable Web

38

Where is the resource? What is its id?

How can I communicate with the resource?

Which are the resource properties? What 
can I do next?

Web: 
• Targeted to humans
• One client  

Programmable Web: 
• Targeted to machines
• Heterogeneous clients
• Multi language  
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Web vs Programmable Web

•The Programmable Web use the same technologies and 
communication protocols as the WWW in order to cope 
with current problems. 

•Current differences
–  The data is not delivered necessarily for human consumption 

(M2M)

– Nowadays an specific client is needed per application at least 
until  we solve the problems derivated from the semantic 
challenge

– A client can be implemented using any programming language
•  Data is encapsulated and transmitted using any serialization languages 

such asJSON, XML, HTML, YAML

39
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Programmable Web Project
Part 3: RESTful Web APIS

Spring 2025

• ROA Principles

• RESTful Web APIs

• Designing RESTful Web APIs

• Resource Oriented design vs 
hypermedia driven design
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INTRODUCTION TO ROA

41
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REST (Representational State Transfer)

•Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fieldin
g_dissertation.pdf

•Representation
– Resource-oriented: operates with resources.

•State:
– value of all properties of a resource at the certain moment.

•Transfer: State can be transferred
– Clients can:

1) retrieve the state of a resource and 
2) modify the state of the resource

42

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
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ROA Introduction

•Resource Oriented Architecture (ROA)

– Architecture for creating Web APIs

– It conforms the REST design principles

– Base technologies: URLs, HTTP and Hypermedia

•Resource : 

– Anything important enough to be referenced as a thing itself
• For example: List of the libraries of the city of Oulu, the last software version of 

Windows, the relation between two friends, the result of factorizing a number

• Each resource is identified by a unique identifier

•We operate with resources representations by means of 

HTTP Requests

– Retrieve or manipulate the state of the resource

45
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ROA pillars

46

Four properties:

1) Addressability

2) Uniform interface

3) Statlessness

4) Connectedness
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Forum Resource hierarchy

47

forum

CategoryUser

Name

Description

Thread
Name

FirstName LastName Message
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Addressability

•Exposes the interesting aspects of its data set as resources

– Each resource is exposed using its URI

– The URI can be copied, pasted and distributed

– Example:
•http://forum.com/users/user1 refers to the information of the user of the Forum

• I can send this URI by email, and the receiver can access this information by copying this URI into 
his/her browser

48
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Addressability in WWW

•The WWW is addressable

49
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Uniform interface (I)

•Every API uses the same methods with the same meanings
– Without a uniform interface, clients have to learn how each API is expected to get and send information

•ROA uses uniform interface provided by HTTP to act over the resource provided in 
the URI

50

Method Description

GET Returns the resource representation

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server
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Uniform interface (II)

•PATCH  http://tools.ietf.org/html/rfc5789

– Partial edition/modification of a resource

• Client and server must agree on a new media type for patch documents

– RFC 6902: proposed standard patch format for JSON. 

• Send a diff of the resource representation. Changes to be done to the resource.
• Content-Type: application/json-patch+json

• [{ "op": "remove", "path": "/a/b/c" }, { "op": "add", "path": "/a/b/c", "value": [ "foo", "bar" ] }, 

{ "op": "replace", "path": "/a/b/c", "value": 42 }]

52

http://tools.ietf.org/html/rfc5789
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Uniform interface (III)

• URI: http://forum.com/messages/msg-3

– GET: Retrieves this representation

– DELETE: Removes the message with id «msg-3» from the server

– PUT: Edits the message with id «msg-3».  Title, Body, Sent, SenderIP, and Registered could be modified and MUST be 
included in the request body (The complete representation is sent and it replaces the old one)

– POST: Add a response to the message with id «msg-3» (subordinate resource). The body of the request should 
include the new message

53

<msg:Message messageID="msg-3">

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Body>Does anyone know where Jussi Markkanen used to play before

he came to Edmonton Oilers? He was excellent in the Stanley Cup finals

last season! Too bad they lost...</msg:Body>

<msg:Sent>2005-09-04T19:22:39+02:00</msg:Sent>

<msg:SenderIP>217.119.25.162</msg:SenderIP>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>
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Uniform interface in WWW

•Only GET and POST supported in HTML

•Rest of HTTP methods supported through Javascript

54
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Statelessness (I). State concept.

•Resource state:
– A resource representation that is exchanged between server and 

client

– Same for all the clients making simultaneous requests

–Lives in the server

•Application state:
– Snapshot of the entire system at a particular instant, including past 

actions and possible future state transitions

– Future possible application states are informed in the resource 
representation sent by the server.

– Lives in the client

STATLESSNESS => REFERS TO APPLICATION STATE 

55
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Statelessness (II)

•Every HTTP request happens in complete isolation 
(STATELESS) -> (application state)

– Server never operates based on information from previous 
requests, SERVER DOES NOT STORE APPLICATION STATE

• Eg: In a photo album application if I am in “picture 3” I cannot 
request the “next picture” but “picture 4”

– Server considers each client request in isolation and in terms 
of the current resource state. However, it provides information 
on which are the future states.

– Client handles the application workflow

56
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Statelessness in WWW

•Originally the WWW is statless
– GET an URL always should return same website

•Multiple applications needs state information (login, last accessed, visited pages)
– Cookies

– Session id in URL

57
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Connectedness (I)

•Resource representation MUST contain links to other 
resources

•Links must include
– The relation among resources 

– Optionally, information on how to access linked resources

58

R
R

R

R R
R

R

R R
Service exposes everything 
under single URI
not addressable, not connected

Service is addressable, but not 
connected

Service is addressable 
and connected

R=Resource

RRR
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Connectedness (II)

59

<msg:Thread>

<msg:Message messageID="msg-7">

<atom:link rel="self" href="http://forum/messages/msg-7"></atom:link>

<msg:Title>Edmonton's goalie</msg:Title>

<msg:Registered userID="user-7">

<user:Nickname>HockeyFan</user:Nickname>

<user:Avatar file="avatar_7.jpg"/>

<atom:link rel="self" href="http://forum/users/HockeyFan"/>

</msg:Registered>

</msg:Message>

<msg:Message messageID="msg-7" replyTo="msg-3">

<atom:link rel="self" href="http://forum/messages/msg-7"/>

<msg:Title>History</msg:Title>

<atom:link rel="http://forum/rels/parent-message" 

href="http://forum/messages/msg-3"/>

<msg:Registered userID="user-1">

<user:Nickname>Mystery</user:Nickname>

<user:Avatar file="avatar_1.png"/>

<atom:link rel="self" href="http://forum/users/Mistery"/>

</msg:Registered>

</msg:Message>

</msg:Thread>

A representation of the message with
id «msg-3»

A representation of user with
nickname «HockeyFan»

A representation of the parent
message of «msg-7»
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Connectedness in WWW

•WWW is connected
– Access and modification of any resource state: following links or filling forms

60

<a href="http://www.youtypeitwepostit.com/messages/">

See the latest messages

</a>

<img rel="icon" src="http://www.example.com/logo.png" />

<form action="http://www.youtypeitwepostit.com/messages" 

method="post">

<input type="text" name="message" value="" 

required="true" />

<input type="submit" value="Post" />

</form>
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RESTFUL WEB APIS.
HYPERMEDIA.

61
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Richardson Maturity Model

62
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Richardson Maturity Model

63

R
R

R

R R
R

R
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under single URI
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Service is addressable 
and connected
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Richardson Maturity Model
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Richardson Maturity Model
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Richardson Maturity Model
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R
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Richardson Maturity Model

67



Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HATEOAS

70

Hypermedia As The Engine Of Application State



Iván Sánchez Milara Programmable Web Project. Spring 2025
.

HATEOAS

71

Hypermedia As The Engine Of Application State
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HATEOAS

72

Hypermedia As The Engine Of Application State
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HATEOAS

Hypermedia format contain:

•Data (state of a representation)

•Hypermedia controls

– The URI of the associated resource (link)

– The relation between both resources

– Usually, protocol information

73

entities" : [

{ "class" : ["switch"],

"href" : "/switches/4",

"rel" : ["item"],

"properties" : { "position" : ["up"] },

"actions" : [

{ "name" : "flip",

"href" : "/switches/4",

"title" : "Flip the mysterious switch.",

"method": "POST"

}

]

}

]

Hypermedia As The Engine Of Application State
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HATEOAS

Hypermedia As The Engine Of Application State

• Ideally, client just need the entry point to a service
– The rest of the URIs (resources) are discovered through the hypermedia 

controls

– RESOURCES AS STATE IN A MACHINE DIAGRAM

•Well-designed RESTful APIs permit modifying the server 
architecture (e.g. URL structure) and data model without 
breaking the clients

74
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HATEOAS

75

RESTful Web APIs. Richardson, Amundsen and Ruby

Server job is to describe mazes so clients can engage 
with them without dictating any goals

Which are the hypermedia controls?
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Semantic challenge (I)

• In WWW browser does not understand problems domain.
– Humans process information coming from the server and decide on future actions

• In M2M this is not possible:
– Machines NEED to understand the problem domain

– How can we program a computer to make the decisions about which links to follow? 

•This is the biggest challenge in web API design using hypermedia: bridging the 
semantic gap between understanding a document’s structure and 
understanding its semantics.
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Semantic Challenge (II) 
Semantic gap

•The gap between the structure of a document and its real-
world meaning

Protocol semantics
– What kind of actions a client can perform?

– Usually solved using hypermedia control

Application semantics
– How the representation is explained in terms of real-world concepts. 

– Same word might have different meanings in different contexts.
• E.g. time: 

– Preparation time if we are using a recipe book

– Workout duration if we are building a gym agenda

– Time of the day if we are using a calendar
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Semantic challenge (III)

Two ways of communicating semantics to the client

78

Media Types Profiles
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Media types

•Defines the format of the message

‒Sometimes include protocol and application semantics

•There are some general-purpose media types with 
hypermedia support:

– Allows defining the protocol semantics and application 
semantics in the API

– HAL, HTML, SIREN, MASON
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LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT 
HYPERMEDIA
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Media types

80

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT 
HYPERMEDIA

<users>

   <user> 

 <nickname>Axel</nickname>

   </user>

   <user> 

 <nickname>Bob</nickname>

   </user>

</users> 

{users:[

 user:{nickname:”Axel},

 user:{nickname:”Bob”}

]}

<ul>

 <li><a href=”http://myapp/users/axel” rel=”self”>”Axel”</a></li>

 <li><a href=”http://myapp/users/bob” rel=”self”>”Bob”</a></li>

</ul>

http://myapp/users/axel
http://myapp/users/bob
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Media Types: Collection+JSON

{ "collection":

    {

        "version" : "1.0",

        "href" : "http://www.youtypeitwepostit.com/api/",

        "items" : [

          { "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",

 "data" : [

     { "name" : "text", "value" : "Test." },

     { "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }

 ],

 "links" : []

           },

          { "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",

 "data" : [

     { "name" : "text", "value" : "Hello." },

                { "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }

 ],

 "links" : []

           },

        "template" : {

 "data" : [

{"prompt" : "Text of message", "name" : "text", "value" : ""}

 ]

         }

    }

}
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Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/
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Mason

• Mime-type: application/vnd.mason+json
• Link: https://github.com/JornWildt/Mason

{”name”: ”eeyore”,

 ”color”: ”grey”

"@controls": {

    "self": {

      "href": "http://api.example.org/donkey/eeyore"

    }, 

    "dk:mood": {

      "title": "Change mood", 

      "href": "http://api.example.org/donkey/eeyore/mood",

      "method": "PUT", 

      "encoding": "json", 

      "schema": {

        "type": "object", 

        "properties": {

          "Mood": {"type": "string"}, 

          "Reason": {"type": "string"}

      }

    }

  }

}
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LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats

https://github.com/JornWildt/Mason
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Profile

•Explains the document semantics that are not covered by its 
media type.

• A profile describes the exact meaning of each semantic 
descriptor

<span class="fn">Jenny Gallegos</span>

– “A profile is defined to not alter the semantics of the resource 
representation itself, but to allow clients to learn about 
additional semantics[…] associated with the resource 
representation, in addition to those defined by the media type” 
[RFC 6906]
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• It is provided to the client either defined in a text document 
or using a specific description language: ALPS, JSON-LD, 
RDF-Schema, XMDP
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Instagram API

84

https://developers.facebook.com/docs/instagram-api/

e.g. Comment Moderation: https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

https://developers.facebook.com/docs/instagram-api/
https://developers.facebook.com/docs/instagram-api/guides/comment-moderation
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SUMMARY

87
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Programmable Web

88

Where is the resource? What is its id?

How can I communicate with the resource?

Which are the resource properties? What 
can I do next?

Web: 
• Targeted to humans
• One client  

Programmable Web: 
• Targeted to machines
• Heterogeneous clients
• Multi language  
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https://apisyouwonthate.com/blog/rest-
and-hypermedia-in-2019

Addressability

Uniform interface

Connectedness

Statelessness

https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019
https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019
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DESIGN OF RESTFUL WEB APIS USING ROA

91
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RESTful Web services design steps
92

1. Figure out the data set

2. Split the data set into resources

➢ Create Hierachy

3. Name the resources with URIs

4. Establish the relations and possible actions among resources

5. Expose a subset of the uniform interface

6. Design the resource representations using hypermedia formats
1. Define the media types

2. Define the profiles

7. Define protocol specific attributes
➢ E.g. Headers, response code

8. Consider error conditions: What might go wrong?
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Hypermedia driven APIs examples

•Skype for business:
– https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia

•Paypal is promoting the use of Hypermedia in their REST API:
– https://developer.paypal.com/docs/api/overview/

– https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/

•Amazon AppStream:
– http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html

•Foxycart:
– https://api.foxycart.com/docs#

•Zalando:
– http://zalando.github.io/restful-api-guidelines/index.html

126

https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia
https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/
http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html
https://api.foxycart.com/docs
http://zalando.github.io/restful-api-guidelines/index.html
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