Ivan Sanchez Milara

Programmable Web Project
Part 2: Programmable Web

Spring 2023

WWW technologies (Il)

Programmable Web

RESTful Web APIs and HATEOAS

Programmable Web Project. Spring 2023.

\l/

i

OULUN
YLIOPISTO

The World Wide Web and technologies

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

What is the World Wide Web?

Goal: Distribute data

eHuman consumption (H2M)

e Hypertext

eUniform API and technologies
eSingle client (Web browser)

Ivan Sanchez Milara Programmable Web Project. Spring2023. 0OULUN
IIIIIIIII

TECHNOLOGIES FOR THE WWW

*Backend: Business logic + data storage (databases)
*Transport protocol: HTTP
*Data serialization languages

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

Client server model

=

Clients /.

Server

© David Vignoni LGPL license \ I /
https://en.wikipedia.org/wiki/Client%E2%80%93server_model#/media/File:Client-server-model.svg w
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

DATABASES

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

e Relational databases are still the most commonly used.

Examples - Relational

e Relational databases are mainly composed by tables.
e A table is formed by zero (empty) or more rows.

e A row consists of one or more fields
— Each has a certain datatype. (columns)

FirstName Surname Personalid
John Smith 3321
Jack Johnson 4352
Mary Smith 9807

e Some examples are: PostgreSQL, MySQL, SQLite

Ivan Sanchez Milara

Programmable Web Project. Spring 2023.

\l/

i

OULUN
YLIOPISTO

Examples — Non-relational

—MongoDB
e Scalable, open source database
e JSON based data store: BSON
e Document-oriented database
— Database formed by Collections of Documents
e Example of MongoDB document:

{
name: “jim”,
surname: “smith”,
grade: 3

}

e Example of MongoDB query:

db.students.find({grade: {$gt:3}});

Ivan Sanchez Milara Programmable Web Project. Spring 2023.

\l/

i

OULUN
YLIOPISTO

TRANSPORT PROTOCOL: HTTP

Programmable Web Project. Spring2023. 0OULUN
IIIIIIIII

10
HTTP Request parts

e HTTP request example to http://www.cse.oulu.fi

/
The HTTP method. Here, the client

(web browser) is trying to GET some The path In this example the
i(nformation flro]rc\.w) the server path points to the root of the
www.cse.oulu.fi).

-

host (just /)

\

REQUEST ~
meé —{_[GET / HTTP/1.1
Keep-Alive: 300
Connection: keep-alive
Host: www.cse.oulu.fi
User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;g=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;9g=0.7
The request headers Since the request does not
have entity, it only contains general and request
specific headers.
The entity-body This particular request has no entity body, which means the envelope is
empty! This is typical for a GET request, where all the information needed to complete the \l/
request is in the path and the headers. [L\Z-']
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

11

HTTP Response parts

e Response Example: http://www.cse.oulu.fi

The HTTP response code. In this case the GET

operation must have succeeded, since the
response code is 200 (“OK").

The general,

response and entitity headers

STATUS
LINE —{_ [mTTP/1.1 200 OK
timeout=15, max=100
Keep-Alive
Wed, 05 Oct 2011 17:26:03 GMT
Apache/2.2.3 (CentOS)
Cookie,User-Agent,Accept-Language
: chunked
text/html; charset=utf-8
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN“ "http://www.w3.org/TR/htmld/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<meta name="robots" content="index,follow">
<MainPage - Department of Computer Science and Engineering</title>
(The entity-body. In this case, the entity
Lbody is a HTML document representing
a web page. N
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

12

DATA SERIALIZATION LANGUAGES

Programmable Web Project. Spring2023. 0OULUN
IIIIIIIII

13

JSON

e JavaScript Object Notation
e Based on a subset of the JavaScript Language

e Built on two structures:
object
— A collection of name/value pairs I—@J——LG)—I

)
S

— An ordered list of values o | [vaiue | L o—

e These structures can be mapped to structures in almost any
programming language

e Exam p|e {"widget": {

"debug": "on",

"window": {
"title": "Sample Konfabulator Widget",
"name": "main window",

"width": 500,
"height": 500 }
}H}

\l/

http://www.json.org I:I.I\:l.l:I

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

14

Hypermedia

e Techniques to integrate content in multiple formats (text, image, audio, video...)
in @ way that all content is connected and accessible to the user.

“Hypertext [...] the simultaneous presentation of information and controls such that
the information becomes the affordance through which the user obtains choices
and selects actions. Machines can follow links when they understand the data
format and the relations type”

Roy Fielding, “A little REST and Relaxation*”

e Hypermedia
— Data

— Hypermedia controls. Indicates what actions could | do next, what are the target
resource to perform the action (link) and how can | perform those actions (http
method / response).

\l/
* http://www.slideshare.net/royfielding/a-little-rest-and-relaxation w

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

15

Hypermedia (HTML)

Get started

You type it, we post it!

Exciting! Amazing!

Get started About this site

<form action="http://www.youtypeitwepostit.com/messages" method="post">
<input type="text" name="message" value="" required="true" />
<input type="submit" wvalue="Post" />

</form>

Messages

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

16

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">
<input type="text" name="message" value="" required="true" />
<input type="submit" value="Post" />

</form>

Messages

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

17

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">
<input type="text" name="message" value="" required="true" />
<input type="submit" value="Post" />

</form>

Messages

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

Ivan Sanchez Milara

Programmable Web Project. Spring 2023.

18

CLIENTS

\l/

i

OULUN
YLIOPISTO

. 19
Web browser. An Human Driven

client.

e A web browser is the client for ALL websites and web
applications.

* TECHNOLOGIES:

— HTML-> Markup language which defines the content to be rendered by the
browser

— CSS-> Style sheet language used for describing the look and formatting of a
document

— JAVASCRIPT-> Scripting language that listen for events triggered by the
users, the network or the host system and execute predefined actions.

— AJAX-> A set of techniques based on Javascript which enable asynchronous
interaction between a web browser and a server

— WebSocket-> Computer communication protocol over TCP that provides
full-duplex communication. It enables for instance, pub/sub.
Ny

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

20

Types of clients

e Human driven clients

— Decisions made by humans. IMPORTANT: how to represent information
to humans

e Crawlers

— It starts following all links iteratively from certain web, executing an
algorithm for each link followed

— E.g. Google

e Monitors
— Checks the state of a resource periodically
— E.g. RSS aggregator

e Scripts

— Simulate an human repeating a determined set of actions (eg. Accessing
sequentially a list of links).

e Agents

— Try to emulate humans who are actively engaged with a problem. Looks
to representation and take autonomous decisions based on states.

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

21

RPC TECHNOLOGIES EXAMPLES

GRPC

Programmable Web Project. Spring2023. 0OULUN
IIIIIIIII

22

OLD SOAP WEB SERVICES

REQUEST

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" >
<soap:Body>
<m:getUserFirstName xmlns:m="http://service.forum.rsi.isg.oulu.fi">
<m:userId>user-3</m:userld>
</m:getUserFirstName>
</soap:Body>
</soap:Envelope>

RESPONSE

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<getUserFirstNameResponse xmlns="http://service.forum.rsi.isg.oulu.fi">
<getUserFirstNameReturn>Axel</getUserFirstNameReturn>
</getUserFirstNameResponse>
</soap:Body>
</soap:Envelope>

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

23

<wsdl:definitions name="nmtoken"? tar;tN;;n;s;;a;ez“t;'?b_j”_ ROOt e I ement

<import namespace="uri" location="uri" (ns for binding technology, ns for defined types) />

<wsdl:types> _L_Typ es

<xsd:schema ... ns for defined types /> definition
<— extensibility element: elements, types definitions—>
e
</wsdl:types> _ Note. WSDL does not

restrict types or elements
in messages. Application
types are named as

<wsdl:message name="nmtoken™=
<part name="nmtoken" element="gname" type="gname"/>*

</wsdl:message> extensibility elements and
<wsdl:portType name="nmtoken"> are defined in the schema
<wsdl:operation name="nmtoken"> associated to that type.
<wsdlinput name="nmtoken" message="gname"></wsdl:input=>
<wsdl:output name="nmtoken" message="gname"></wsdl:output> Abstra ct
<wsdl:fault name="nmtoken" message="gname"> </wsdl:fault>
</wsdl:operation=> definition

</wsdl:poriType> sesssissmoos=sooomoss=sooEsos=mTos
<wsdl:binding name="nmtoken" type="gname">
<-- extensibility element: reference to binding technology--> CO ncrete
<wsdl:operation name="nmtoken"> ——
< extensibility element: reference to binding technology--=> defl n ition
<wsdlinput> <-- extensibility element : ref. to binding tech.—> </wsdl:input>
<wsdl:output> <-- extensibility element: ref. to binding tech.—-> </wsdl:output=
<wsdl:fault name="nmtoken"><-- extensibility element --> </wsdl:fault>=
</wsdl:operation=>
</wsdl:binding=>
<wsdl:service name="nmtoken">
<wsdl:port name="nmtoken" binding="gname">
<-- extensibility element: reference to binding technology--=>

Note. WSDL main
elements definitionis
technology agnostic.

</wsdl:port> ; — ; N/
e ="nmtoken” = "some name O
</wsdl:service= e .
</wsdl:definitions> gname = some I
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

24

GRPC intro

e Based on Protocol Buffers

— Google technology for serializing data structures

gRPC
Stub

Ruby Client

C++ Service

Android-Java Client

\ls
https://grpc.io/docs/what-is-grpc/introduction/ @
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

https://developers.google.com/protocol-buffers/docs/overview
https://grpc.io/docs/what-is-grpc/introduction/

GRPC. Proto

syntax = "proto3";

enum BookCategory {
MYSTERY = 0;
SCIENCE_FICTION = 1;
SELF_HELP = 2;

}

message RecommendationRequest {
int32 user_id = 1;
BookCategory category = 2;
int32 max_results = 3;

¥

message BookRecommendation {
int32 id = 1;
string title = 2;

}

message RecommendationResponse {

repeated BookRecommendation recommendations

}

service Recommendations {

rpc Recommend (RecommendationRequest) returns (RecommendationResponse);

}

https://realpython.com/python-microservices-grpc/

Ivan Sanchez Milara

Programmable Web Project. Spring 2023.

25

Compiled to
programming
language
structure
(objects)

\l/

i

OULUN
YLIOPISTO

GRPC. Server

class RecommendationService(recommendations pb2 grpc.RecommendationsServicer):

def Recommend(self, request, context):
if request.category not in books by category:
context.abort(grpc.StatusCode.NOT_FOUND, "Category not found")

books for category = books by category[request.category]
num_results = min(request.max_results, len(books_for_category))

books_to_recommend = random.sample(
books_for_category, num_results

)

return RecommendationResponse(recommendations=books_to_recommend)

https://realpython.com/python-microservices-grpc/

Ivan Sanchez Milara Programmable Web Project. Spring 2023.

26

\l/

i

OULUN
YLIOPISTO

27

GRPC. Client

>>> channel = grpc.insecure_channel("localhost:50051")
>>> client = RecommendationsStub(channel)
>>> request = RecommendationRequest(
user_id=1, category=BookCategory.SCIENCE_FICTION, max_results=3
)

>>> client.Recommend(request)

Nz
https://realpython.com/python-microservices-grpc/ w
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

28

Types of service methods

e Unary: the client sends a single request to the server and gets a single
response back, just like a normal function call.

* Server streaming RPCSs: client sends a request to the server and
gets a stream to read a sequence of messages back.
— The client reads from the returned stream until there are no more messages.

— gRPC guarantees message ordering within an individual RPC call.

* Client Streaming RPCSs: the client writes a sequence of messages

and sends them to the server, again using a provided stream

— Once the client has finished writing the messages, it waits for the server to read them
and return its response.

— gRPC guarantees message ordering within an individual RPC call.

- Bidirectional streamming RPCSs: Mmix of two previous.

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

29

PROGRAMMABLE WEB

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

30

What about current Web APIs (RPC
or CRUD)?

e Need excessive documentation

— Exhaustive description of required protocol: HTTP methods, URLs ...

e Integrating a new APl inevitably requires writing custom
software
— Similar applications required totally different clients

e \When an application APl changes, clients break and have to be
fixed

— For instance a change in the object model in the server or the URL
structure => change in the client.

e Clients need to store a lot of information
— Protocol semantics
— Application semantics

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

31

Programmable Web

Which are the resource properties? What
can | do next?

Hypermedia

HTTP | How can | communicate with the resource?

URL | Where is the resource? What is its id?

Web: Programmable Web:
e Targeted to humans * Targeted to machines
* Oneclient * Heterogeneous clients

* Multi language

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

32

Web vs Programmable Web

eThe Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

e Current differences
— The data is not delivered necessarily for human consumption
(M2M)

— Nowadays an specific client is needed per application at least
until we solve the problems derivated from the semantic
challenge

—A client can be implemented using any programming language

e Data is encapsulated and transmitted using any serialization languages
such asJSON, XML, HTML, YAML

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

33

Hypermedia driven Web APIs

e Follows strictly Fielding dissertation principles.

— REST APIs must be hypertext driven:
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

e Uses Hypermedia as the Engine of the Application State

— Hypermedia describes the actions that you can perform with the
resources.

e Client does not memorize operations nor workflow. Everything is in the
messages

e Documentation reduced drastically: messages are documented by
themselves

— A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

e Easier to create general clients
— Example: RSS and Atom PUB. Multiple clients can read the same RSS NP

feed. [u\:;]

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Programmable Web Project
Part 3: RESTful Web APIS

Spring 2023

ROA Principles
RESTful Web APIs
Designing RESTful Web APIs

Resource Oriented design vs
hypermedia driven design

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

35

INTRODUCTION TO ROA

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

36

REST (Representational State
Transfer)

e Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fieldin
g dissertation.pdf

e Representation
— Resource-oriented: operates with resources.

e State:
—value of all properties of a resource at the certain moment.

e Transfer: State can be transferred

— Clients can:
1) retrieve the state of a resource and
2) modify the state of the resource NV

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

37

REST Constraints

e Client-server architecture
e Stateless

e Cacheability

e Layered system

e Code on demand

e Uniform interface |
AN Vg

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

38

You D) Q

Roy T. Fielding: Understanding the REST Style

https://www.youtube.com/watch?v=w5j2KwzzB-0

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

39

ROA Introduction

e Resource Oriented Architecture (ROA)

— Architecture for creating Web APIs

— It conforms the REST design principles

— Base technologies: URLs, HTTP and Hypermedia
e Resource:

— Anything important enough to be referenced as a thing itself

e For example: List of the libraries of the city of Oulu, the last software version of
Windows, the relation between two friends, the result of factorizing a number
e Each resource is identified by a unique identifier

e \We operate with resources representations by means of
HTTP Requests

— Retrieve or manipulate the state of the resource

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

40

ROA pillars

Four properties:

1) Addressability

2) Uniform interface
3) Statlessness

4) Connectedness

\l/

i

an Sa i Project. Spring 2023. OULUN
Ivan Sanchez Milara Programmable Web Project. Spring YLIOPISTO

41

Forum Resource hierarchy

@ ~~~~~~~~~ Description

~—

m| w """""""""""""""""

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

42

Addressability

e Exposes the interesting aspects of its data set as resources

—Each resource is exposed using its URI
—The URI can be copied, pasted and distributed

—Example:

*http://forum.com/users/userl refersto the information of
the user of the Forum

e | can send this URI by email, and the receiver can access this
information by copying this URI into his/her browser

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

43

Addressability in

e The WWW is addressable

€ Google - Google Chrome
[

SN

« C' | [3 https://www.google.fi/
Gmail Images
g Suomi
4
Google Search I'm Feeling Lucky
AT&T 2G 9:41 AM 97%
- = Wiite Link e
¢ Doe Google.fi offered in: suomi svenska

88 send \ o Speling ~ U Attach v @ Security ~ [mlSave ~

www.google.fi From: Ivén Sinchez Milara <ivan@ee.oulufi> |
- To: pwp-course@ee.oulufi

Thanks!!! Subject: Link
 ———————

BodyText v Variable Width - B A[A AAlES
www.google.fi
Ivén Sanchez Milara. <ivan@ee.oulu.fi>
Research Scientist. PhD Candidate. Hobile:
Room TS354 Office phone:(+3
Center for Ubiquioutous Computer v ubicomp . Fi

ui

eC &

\l/

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

44

Uniform interface ()

e Every APl uses the same methods with the same meanings

— Without a uniform interface, clients have to learn how each API is expected
to get and send information

e ROA uses uniform interface provided by HTTP to act over the
resource provided in the URI

GET

PUT

POST

DELETE

Ivan Sanchez Milara

Returns the resource representation

Changes the state of the resource

Creates a new resource when the URL is known

Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

Removes a resource from the server P

i

Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

45

Uniform interface (Il)

e POST
— Creates a subordinate resource, that is, a resource existing as a children of
another resource

¢ Difference with PUT:
— POST creates new resources when the client does not know their URI

e Example: A client wants to create a new message in the forum

— The forum backend generates itself APIs for new messages. Client does not know in
advanced.

— POST HTTP request to /forum/categories/categoryName

— The server creates the message and assigns the URI, e.g.,
/forum/messages/message5

e The server sends the URI of the new resource back to the client in the HTTP
Response headers

— Appends information to the current resource state

e Example: Adding lines to a log entry
e Difference with PUT:

— POST modifies just part of the resource state

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

46

Uniform interface (Il)

¢ PATCH http://tools.ietf.org/html/rfc5789

— Partial edition/modification of a resource

e Client and server must agree on a new media type for patch
documents

— RFC 6902: proposed standard patch format for JSON.

e Send a diff of the resource representation. Changes to be done to the
resource.

* Content-Type: application/json-patch+json

° [{ "OP" : "remove" , npathu con /a/b/cu } , { "OP" : naddn , "Path" : n/a/b/c" ,
Hvaluen : ["fOO" , nbarn] } , { nopn : nreplacen , npathn : n/a/b/cn ,
"value": 42 }]

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://tools.ietf.org/html/rfc5789

47

Uniform interface (lll)

e URI: http://forum.com/messages/msg-3

<msg:Message messageID="msg-3">
<msg:Title>Edmonton's goalie</msg:Title>
<msg:Body>Does anyone know where Jussi Markkanen used to play before
he came to Edmonton Oilers? He was excellent in the Stanley Cup finals
last season! Too bad they lost...</msg:Body>
<msg:Sent>2005-09-04T19:22:39+02:00</msg: Sent>
<msg:SenderIP>217.119.25.162</msg:SenderIP>
<msg:Registered userID="user-7">
<user :Nickname>HockeyFan</user:Nickname>
<user:Avatar file="avatar_ 7.jpg"/>
<atom:1link rel="self" href="http://forum/users/HockeyFan"/>
</msg:Registered>
</msg:Message>

— GET: Retrieves this representation
— DELETE: Removes the message with id «msg-3» from the server

— PUT: Edits the message with id «msg-3». Title, Body, Sent, SenderlP, and Registered
could be modified and MUST be included in the request body (The complete
representation is sent and it replaces the old one)

— POST: Add a response to the message with id «msg-3» (subordinate resource). The

body of the request should include the new message </

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

48

Uniform interface in WWW

e Only GET and POST supported in HTML

e Rest of HTTP methods supported through Javascript

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

49
Statelessness (l). State concept.

e Resource state:

—A resource representation that is exchanged between server and
client

—Same for all the clients making simultaneous requests
—Lives in the server

e Application state:

—Snapshot of the entire system at a particular instant, including past
actions and possible future state transitions

—Future possible application states are informed in the resource
representation sent by the server.

—Lives in the client

\l/

STATLESSNESS => REFERS TO APPLICATION STATE [IC'I]

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

50

Statelessness ()

eEvery HTTP request happens in complete isolation
(STATELESS) -> (application state)

—Server never operates based on information from previous
requests, SERVER DOES NOT STORE APPLICATION STATE

e £g: In a photo album application if | am in “picture 3” | cannot
request the “next picture” but “picture 4”

—Server considers each client request in isolation and in terms
of the current resource state. However it provides information
on which are the future states.

—Client handles the application workflow

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

51

Statelessness in WWW

e Originally the WWW is statless

— GET an URL always should return same website

e Multiple applications needs state information (login, last
accessed, visited pages)

— Cookies
— Session id in URL

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

52

Connectedness (l)

e Resource representation MUST contain links to other
resources

e Links must include
—The relation among resources
— Optionally, information on how to access linked resources

®) (R,
@ %9 0 <%

Service exposes everything
under single URI
not addressable, not connected

Service is addressable, but not Service is addressable
connected and connected

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

53

Connectedness (ll)

[A representation of the message with
<msg:Thread> id «msg-3»
<msg:Message messagelD="msg-3">
<atom:1link rel="self" href="http://forum/messages/msg-3"></atom:1link>
<msg:Title>Edmonton's goalie</msg:Title>
<msg:Registered userID="user-7">
<user:Nickname>HockeyFan</user:Nickname>
<user:Avatar file="avatar 7.jpg"/>
<atom:1link rel="self" href="http://forum/users/HockeyFan"/>
</msg:Registered>
</msg:Message>
<msg:Message messagelD="msg-7" replyTo="msg-3">
<atom:link rel="self" href="http://forum/messages/msg-7"/>
<msg:Title>History</msg:Title>
<atom:link rel="http://forum/rels/parent-message"
href="http://forum/messages/msg-3"/>
<msg:Registered userID="user-1">
<user:Nickname>Mystery</user:Nickname>
<user:Avatar file="avatar 1l.png"/>
<atom:1link rel="self" href="http://forum/users/Mistery"/>
</msg:Registered>
</msg:Message>
</msg:Thread>

y
A representation of user with

nickname «HockeyFan»

A representation of the parent
message of «msg-7»

A YL

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

54

Connectedness in WWW

e WWW is connected

— Access and modification of any resource state: following links or filling forms

See the latest messages

<form action="http://www.youtypeitwepostit.com/messages"
method="post">

<input type="text" name="message" wvalue=""
required="true" />

<input type="submit" value="Post" />
</form>

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

55

RESTFUL WEB APIS.
HYPERMEDIA.

Programmable Web Project. Spring2023. 0OULUN
IIIIIIIII

56

Richardson Maturity Model
Glory of REST =~

Level 3: Hypermedia Controls

Level 1: Resources
Level 0: The Swamp of POX

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

57

Richardson Maturity Model

Glory of REST Y

Level 0: The Swamp of POX

R=Resource

Service exposes everything

) \l/
under single URI
not addressable, not connected [IC,'I]
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

58

Richardson Maturity Model

Glory of REST Y

Level 1: Resources

Level 0: The Swamp of POX

Service is addressable, but not s\l
connected ["C"']
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

59

Richardson Maturity Model

Glory of REST Y

Level 1: Resources

Level 0: The Swamp of POX

Service is addressable, but not N Vg
connected ["C"']
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

60

Richardson Maturity Model

Glory of REST Y

| Level 3: Hypermedia Controls ‘

Level 1: Resources

Level 0: The Swamp of POX

Service is addressable \ 1,
and connected

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

61

Richardson Maturity Model
Glory of REST =~

Level 3: Hypermedia Controls

Level 1: Resources

Level 0: The Swamp of POX

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

62

RESTful and Hypermedia

e PROGRAMMABLE WEB goal:

— Achieve a machine to machine understanding similar the client-
server understanding in the web.

e E.g. Modifying the object model in the server does not affect the server

e RESTful designers forgot one of the principles of REST:

— What needs to be done to make the REST architectural style clear on the
notion that hypertext is a constraint? In other words, if the engine of
application state (and hence the API) is not being driven by hypertext, then it
cannot be RESTful and cannot be a REST API.

Roy Fielding. REST APls must be hypertext-driven

e Client does not need to know beforehand workflows or
request formats. All that information comes on the server
responses.

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

63

HATEOAS (1)

e Hypermedia As The Engine Of Application State

— Hypermedia

e Techniques to integrate content in multiple formats (text, image, audio, video...) in a
way that all content is connected and accessible to the user

— Engine of Application State
e Hypermedia: Core and driving force of the transformation of the application state
e The server manipulates the client’s state by sending a hypermedia “menu” containing
options from which the client is free to choose.
e Hypermedia contains:
— Data
— Hypermedia controls:
G » Enables the state transitions, guiding clients future requests.
Q » Provides protocol semantics: which URL, method, request body is required
to perform an application state transition.
Q @ » Server warrantees workflow control. The hypermedia control:
» Describe relationship among resources
» Explain who the client should integrate the response into the workflow
» In HTML <a>, , <script> and Link header are hypermedia control

e Hypermedia drives the application state :
s

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

64

HATEOAS
Hypermedia As The Engine Of Application State

| “ How about'youdecide ' < ¢ 2"

1 =T o '
ot vou we R bre o i
! ~ S s

A

A BLACK B/RROR rvenr

28 DEC

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

65

HATEOAS
Hypermedia As The Engine Of Application State

\l/

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

66

HATEOAS

Hypermedia As The Engine Of Application State

LAVENDER = NODE
YELLOW = NEW LIFE

<

043 W AL B ARANTEAM MK

E YOUR OWN ADVENTURE ™

YOU'RE THE STAR Of THLE STORY!

CHOOSL FROM 40 POSSIBLE ENDINGS

THE CAVE
OF TIME

BY EDWAKD PACKARD

Nl

I

ILLUSTRATED BY UL GRANGEK

)

Ivan Sanchez Milara

GREEN = RETURN HOME /

4—P awake

\

10—

5%

()

\ /57—b Meta-CYOA (End)
56— Psrfsct Suc\sty

NG B

N THE CAVE OF IVE

< .= =5 (HOOSEYOUROWN ADVENTURE
NARRATIVE MAP

(@<
“—»

52—

Join Cavemen Er\d
{ _
es-» ()
o

46 ——| Mi)
2 — (o
\ / \47—>
17> (cavemen)
AN

> Cave

> cave

\584’ Hawai
64— siren |———

Home among the Cavemen
e (The End)
\34\-

e Primitive People

69| Medieval Ages

\l/

Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

HATEOAS

Hypermedia format contain:

eData (state of a representation)

eHypermedia controls

— The URI of the associated resource (link)
—The relation between both resources

— Usually, protocol information:

Ivan Sanchez Milara

67

entities" : [
{ "class" :
"href" : "/switches/4",
"rel" : ["item"],
"properties" : { "position" :
"actions" : [
{ "name" : "flip",
"href" : "/switches/4",
"title" : "Flip the mysterious
switch.",
"method": "POST"
}
1

["switch"],

[nupn] } ,

}

\l/

i

Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

68

HATEOAS
Hypermedia As The Engine Of Application State

e |deally, client just need the entry point to a service

—The rest of the URIs (resources) are discovered through the hypermedia
controls

— RESOURCES AS STATE IN A MACHINE DIAGRAM

e Well designed RESTful APIs permit modifying the server
architecture (e.g. URL structure) and data model without
breaking the clients @ @

% %o

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

69

HATEOAS

<maze version="1.0">»

ecell href="/cells/M" rel="current™=
«title=The Entrance Hallway</title=
<link rel="east" href="/cells/N" />
<link rel="west" href="/cells/L" />

=fcell=

</maze=

Which are the hypermedia controls?

Entrance

RESTful Web APIs. Richardson, Amundsen and Ruby

Server job is to describe mazes so clients can engage

with them without dictating any goals
Nz

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

70

Semantic challenge ()

e In WWW browser does not understand problems domain.

— Humans process information coming from the server and decide on
future actions

e|n M2M this is not possible:

— Machines NEED to understand the problem domain

— How can we program a computer to make the decisions about
which links to follow?

e This is the biggest challenge in web API design using
hypermedia: bridging the semantic gap between
understanding a document’s structure and understanding

its semantics.
\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

Semantic Challenge (ll) "

Semantic gap

e The gap between the structure of a document and its real-
world meaning

Protocol semantics
— What kind of actions a client can perform?
— Usually solved using hypermedia control

Application semantics
— How the representation is explained in terms of real world concepts.

— Same word might have different meanings in different contexts.
eE.g. time:
— Preparation time if we are using a recipe book
— Workout duration if we are building a gym agenda

—Time of the day if we are using a calendar :
Ny

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

72

Semantic challenge (1)

Two ways of communicating semantics to the client

Media Types Profiles

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

73

Media types

e Defines the format of the message
—Sometimes include protocol and application semantics

e There are some general purpose media types with
hypermedia support:

—Allows defining the protocol semantics and application
semantics in the API

—HAL, HTML, SIREN, MASON

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

\ls
LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats [I-\:'l-l]

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

74

Media types

PLAIN JSON OR PLAIN XML DOES NOT SUPPORT
HYPERMEDIA

<users>
<user>
<nickname>Axel</nickname>
</user>
<user>
<nickname>Bob</nickname>
</user>
</users>
{users: |
user: {nickname:”Axel},
user: {nickname:”Bob”}
11

"Axel”</1li>
"Bob”</1li>

\ls
LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats [I-\:'l-l]

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://myapp/users/axel
http://myapp/users/bob

75

Media Types: Collection+JSON

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

{ "collection":

{

"version" : "1.0",
"href" : "http://www.youtypeitwepostit.com/api/",
"items" : [
{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",
"data" : [
{ "name" : "text", "value" : "Test." },
{ "name" : "date posted", "value" : "2013-04-22T05:33:58.930Z" }
]I
"links" : []
}I
{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",
"data" : [
{ "name" : "text", "value" : "Hello." },
{ "name" : "date posted", "value" : "2013-04-20T12:55:59.685Z" }
]I
"links" : []
}I
"template” : {
"data" : [
{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats
\ls

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

76

Mason

e Mime-type: application/vnd.mason+json
e Link: https://github.com/JornWildt/Mason

{”"name”: "eeyore”,
"color”: "grey”
"@controls": {
"self": {
"href": "http://api.example.org/donkey/eeyore"
}I
"dk:mood": {
"title": "Change mood",
"href": "http://api.example.org/donkey/eeyore/mood",
"method": "PUT",
"encoding": "Jjson",
"schema": {
"type": "object",
"properties": {
"Mood": {"type": "string"},
"Reason": {"type": "string"}

LIST OF HYPERMEDIA FORMATS IN APPENDIX A: Hypermedia formats NP

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

https://github.com/JornWildt/Mason

77

Profile

e Explains the document semantics that are not covered by its
media type.
e A profile describes the exact meaning of each semantic

descriptor
Jenny Gallegos

—“A profile is defined to not alter the semantics of the resource
representation itself, but to allow clients to learn about
additional semantics]...] associated with the resource
representation, in addition to those defined by the media type”

[RFC 6906]

* |tis provided to the cliente either defined in a text
document or using a specific description language: ALPS,
Ny

JSON-LD, RDF-Schema, XMDP ECF

OULUN

Ivan Sanchez Milara Programmable Web Project. Spring 2023.
YLIOPISTO

78

Twitter API

’ Developer Use cases Products Docs Apply Apps Q
GET statuses/mentions_timeline

Get Tweet timelines

Curate a collection of Tweets

Optimize Twests with Cards G ET StatuseS/home_ti mel i ne

Search Tweets

Returns a collection of the most recent Twests and Retwests posted by the authenticating user and the users they follow. The home timeline is central to how most users
Flter realtime Twests interact with the Twitter service.
Sample realtime Tweets Up to 80O Tweets are obtainable on the home timeline. It is more volatile for users that follow many users or follow users who Tweet frequently.

Get batch historical Twests See Working with Timelines for instructions on traversing timelines efficiently.

Rules and filtering Resource URL

Data enrichments

. https://api.twitter.com/1.1/statuses/home_timeline.json
Tweet objects -

Tweet complance Resource Information

Tweet updates

Response formats JSON
Direct Messages

Requires authentication? ‘Yes (user context only)
Media

Rate limited? Yes

Trends Requests / 15-min window (user auth) 15

Geo

Parameters

Ads

. Required Description
Metrics

Publisher tools & SDKs optional ~ Specifies the number of records to retrieve. Must be less than or equal to 200. Defaults to
20. The value of count is best thought of as a limit to the number of tweets to return

Twitter for Websites because suspended or deleted content is removed after the count has been applied.

Developer utilities since_jid optional Returns results with an ID greater than (that is, more recent than) the specified ID. There
are limits to the number of Tweets which can be accessed through the APL If the limit of
API reference index Tweets has occured since the since_id, the since_id will be forced to the oldest ID

available.

optional Returns results with an ID less than (that is, older than) or equal to the specified ID.

https://developer.twitter.com/en/docs.html NV,

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

Ivan Sanchez Milara

Programmable Web Project. Spring 2023.

79

CLIENTS

\l/

i

OULUN
YLIOPISTO

A B € D E F G H I J K L M

1 Visiting Remote Visiting > remote ?

2 B Total sales Bl #sales Bl #weeks B % B %/week B #tsales Bl tweeks Bl % B %/week B # B % B2 %/week
Ell France 220 9 62.86% 6.98% 130 1 37.14% 37.14% 90 25.71% -30.16%
'S Poland 51 8 38.93% 4.87% 80 9 61.07% 6.79% -29 -22.14% -1.92%
S EEES e 4 47.37% 11.84% 10 2 52.63% 26.32% -1 -5.26% -14.47%
(W TOTAL EUROPE 220 21 62.86% 2.99% 130 12 37.14% 3.10% 90 25.71% -0.10%
VAl U.S.A. 13 2 76.47% 38.24% 4 6 23.53% 3.92% 9 52.94% 34.31%
i Argentina 42 9 37.50% 4.17% 70 8 62.50% 7.81% -28 -25.00% -3.65%
El Mexico 47 1 41.23% 41.23% 67 3 58.77% 19.59% -20 -17.54% 21.64%
i/ TOTAL AMERICAS 247 12 34.07% 2.84% 478 17 65.93% 3.88% -231 -31.86% -1.04%
I8N Ecypt 14 1 31.82% 31.82% 30 4 68.18% 17.05% -16 -36.36% 14.77%
i¥4 South Africa 27 7 23.68% 3.38% 87 8 76.32% 9.54% -60 -52.63% -6.16%
13 QUEENE 38 4 25.50% 6.38% 111 6 74.50% 12.42% -73 -48.99% -6.04%
IR TOTAL AFRICA 321 12 84.03% 7.00% 61 18 15.97% 0.89% 260 68.06% 6.12%
15 [e3IF] 102 4 91.89% 22.97% 9 4 8.11% 2.03% 93 83.78% 20.95%
i} Indonesia 178 7 65.68% 9.38% 93 8 34.32% 4.29% 85 31.37% 5.09%
VA Thailand 5 1 31.25% 31.25% 11 7 68.75% 9.82% -6 -37.50% 21.43%
it} TOTAL ASIA 156 12 57.35% 4.78% 116 19 42.65% 2.28% 40 14.71% 2.53%
il TOTAL 944 57 54.60% 0.96%, 785 66 45.40% 0.69% 159 9.20% 0.27%,

Spreadsheets are general purposes clients, ‘canvas’ for

creating all sort of solutions

Our goal is to build clients, in which the workflow is not fully

hardcode but build upon the information send by the server
* Clients that do not memorize solution ahead of time
* Are able to adapt to new possible actions as the service
presents them
* Are able to adapt to changes in the URLs

Ivan Sanchez Milara Programmable Web Project. Spring 2023.

80

\l/

i

OULUN
YLIOPISTO

81

SUMMARY

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

82

Programmable Web

Which are the resource properties? What
can | do next?

Hypermedia

HTTP | How can | communicate with the resource?

URL | Where is the resource? What is its id?

Web: Programmable Web:
e Targeted to humans * Targeted to machines
* Oneclient * Heterogeneous clients

* Multi language

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

Richardson Maturity Model

Phil Sturgeon | May 20, 2019

In the world of HTTP APIs, a REST is made from
layers of abstraction on top of RPC to solve certain
problems. Each layer builds on the one before it.

RPC

Hitting the same endpoint with GET or
POST or maybe a combination of
both, ususally firing around a method
and a bunch of arguments. Very few
shared conventions from one RPC
implementation to another.

Uniform interface
#2: HTTP Methods

Resources can declare their own
cacheability now. Resources made things
unique, methods make semantics clear.
GET can be cached, POST cannot be, etc.

Automatic retries now possible, retrying on a
GET = fine, POST = bad, PUT = fine, etc.

No need to invent naming conventions for
partial and full updates, can simply use
PATCH & PUT

The gRPC "HTTP Bridge" gets here.

Ivan Sanchez Milara

S

“ate

Q

Addressability

Statelessness

#1: Resources

Every conceptual thing on the Internet
now has its own Uniform Resource
Identifier, like a nickname for a
resource or piece of functionality,
which can be referred to later.

Connectedness

#3: Hypermedia Controls

Instead of an API being just a data store, you
turn it into a state machine, providing next
available actions via "links" , which are
relevant for that resource at that moment,
instead of forcing clients to interpret state
from raw data.

This makes clients thinner, and less prone to
inconsistencies from state inferrance
mismatches.

REST

Just kidding you had a REST API the second
you implemented Step 3.
Now go make your SDK better so clients can
leverage it, and keep improving and
evolving your API.

Programmable Web Project. Spring 2023.

83

https://apisyouwonthate.com/blog/rest-

and-hypermedia-in-2019

\l/

i

OULUN
YLIOPISTO

https://apisyouwonthate.com/blog/rest-and-hypermedia-in-2019

84

Summary

e REST APIs must be hypertext driven according to Fielding:
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

e HATEOAS

— Hypermedia describes the actions that you can perform with the
resources.

¢ Client does not memorize operations nor workflow. Everything is in the
messages

e Documentation reduced drastically: messages are documented by
themselves

— A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

e Easier to create general clients

— Example: RSS and Atom PUB. Multiple clients can read the same RSS
feed.

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

85

DESIGN OF RESTFUL WEB APIS
USING ROA

Programmable Web Project. Spring2023. 0OULUN
IIIIIIIII

86

RESTful Web services design steps

1. Figure out the data set

N

. Split the data set into resources
» Create Hierachy

Name the resources with URIs
Establish the relations and possible actions among resources
Expose a subset of the uniform interface

o U s Ww

Design the resource representations using hypermedia formats
1. Define the media types
2. Define the profiles

7. Define protocol specific attributes
» E.g. Headers, response code

8. Consider error conditions: What might go wrong?

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

87

Forum Resource hierarchy

@ ~~~~~~~~~ Description

~—

m| w """""""""""""""""

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

88

Step 1 - Figure out the data set

e Define the concepts that you are going to expose
in the Web API

e Describe the relations between them

Forum example
Q Forum API permits users to publish new messages
Users can post messages to different categories
Users can reply to other users’ messages
Every user has a public profile and a private profile
> Every user can check other users’ public profiles
> A private profile is shown only to that user’s friends
Q Users can check the last messages anyone has
posted and commented
O Users can search messages in the forum using
several criteria: keywords, user, popularity, date published, date
commented, ...

R W

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

89

Step 2 - Split the data into resources (l)

e RESTful Web services expose 3 kinds of resources:

— Predefined one-off resources for important aspects of the application
e They are usually repository for other resources.
— Also known as Collections.

e They cannot be deleted and their state cannot be modified directly
— State only changes by modifying children resources

Forum example:
List of all users; list of all messages

— A resource for every object exposed through the service
e A service may expose many kinds of objects, each with its own resource set
e Most services expose a large number of these resources

Forum example:
message categories (eg, Science category); particular users; particular messages

— Resources representing the results of algorithms applied to the data set
¢ Collections of resources, which are usually the results of queries

Forum example:
List of messages sent by a certain user; messages of a certain category \l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

90

Step 2 - Split the data into resources (I1)

e Resources are ordered in a hierarchical way
— Hierarchy can be represent using a graph diagram

— Consider carefully the hierarchy when resources which represent results
of algorithms are involved; what is the result of the action?

e STEPS:

— Define all possible types of resources the Web service is intended to
expose

— Give a name to each resource type

Forum example:
Some of the resource types are: message, user, category

— Define the hierarchy
— Define how those types of resources fit in the hierarchy

— Take into account the platform you are going to use
e Some platforms make it easier to create resources in certain way

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

91
Step 3 - Name the resources with URIs (1)

e Associate each resource type with a URI pattern

—In a resource-oriented service the URI contains
all the scoping info
 Design principles:
1. URIs should be descriptive
» The resource and its URI should be naturally and intuitively linked
2. Every URI designates exactly one resource
e Two resources can NOT share the same URI

e Two different resources may point to the same data (but they are
different resources!!!)
e Forum Example:
— At some moment the resources

/forum/users/user _id/last message and
/forum/message/message 1

could point to the same data (a forum message),
but the resources are different!

3. The same resource can have one or many URIs

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

92

Step 3 - Name the resources with URIs (II)

4. URIs should have a clear structure

e Variation should be predictable — a client knowing the structure of the service’s URI
should be able of building URIs

e Example:
—http://forum.com/users/user 1/public profile
e Then, to get the public profile of user_2 the URI should be
— Correct: /users/user 2/public profile
— Incorrect: /get public profile/user 2
e Use the following convention:
1) Use path variables to encode hierarchy: /parent/child

2) Use punctuation characters in path variables if there is no hiearchical relation:
/parent/childl;child2
» Use commas when the order of the scoping is important
» Use semicolon in other cases
3) Use query variables to imply inputs for an algorithm

Forum example:
o http://forum.example.com/Users/userl
o http:://forum.example.com/messages/messagel;message2
o http://forum.example.com/Categories/Science
o http://forum.example.com/Users/userl/history?last=5
> Returns a list of the last 5 messages posted by userl Ny

r

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

Step 4 — Establish the relation
among resources

e State diagram of the application

parent
list elements
eate/remove message

List messages
get/edit priv

e Will help later to design the hypermedia

Ivan Sanchez Milara Programmable Web Project. Spring 2023.

93

\l/

i

OULUN
YLIOPISTO

94

Step 5 - EXpose a
subset of the uniform interface (1)

e Explain what happens to each resource when it is exposed to
any of the methods of the uniform interface
— Remember: A resource DOES NOT have to expose all the methods

— If your resource is read-only, then expose two methods: GET and/or
HEAD

— If your resource can be created or modified you need to implement PUT,
POST and/or DELETE
e Avoid creating your own methods (by overloading POST)

— If you think you need an extra method,
change the verb into a noun and create a resource

— Example: If you think you need a method named publish just create a
resource named publication. Use the uniform interface operations to
modify it (e.g. POST a publication)

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

95

Step 5 - EXpose a
subset of the uniform interface (ll)

e Forum examples:

— Get all messages from the Sports category
GET http://forum.example.com/Category/Sports

— Create a new User
PUT http://forum.example.com/Users/nicky

e User information in the HTTP request body

— Post a message into Science category
POST http://forum.example.com/Category/Science/Messages
e Message content and details of the user are in the message body

— Delete the message msg-4
DELETE http://forum.example.com/Category/Computers/Messages/msg-4

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

. . .96
Steps 6. Design the resource representation using

hypermedia formats

e Assign to each resource representation a format to transfer the
resource state between client and server
—The same resource can have different representation

formats, but:
e The server must understand all representations sent by the clients
e The server must use a representation format the clients can understand
— A client can ask for a specific format in the URI:
» Eg:http://forum.example.com/users/user 1.xml
— A client can send HTTP headers indicating the formats it accepts:
» RFC2616 defines the following headers: Accept, Accept-
Encoding...

* NOTE: The resources representations sent from the client does
not need to use hypermedia: JSON OR XML IS ENOUGH

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

97

Media types (l)

e Domain specific standards

— Defines application level and protocol level semantics
— OpenSearch, SVG, VoiceXML

e Standard for specific patterns (e.g. collection pattern)
— Defines protocol level but not application level standards
¢ Collection+JSON, Atom, Odata

e Microformat and microdata
— Defines protocol level but not application level
— Microformat:
e Extension of HTML4. Allows using the class attribute to define semantics
— Microdata:

e Extension of HTML5. Use itemprop, itemscope and itemtype attributes to define the
semantics

— Lots in schema.org

e General purpose media-types.
— Allows personalizing the the protocol semantics and application level semantics
— HAL, HTML, SIREN

e Be careful with fake hypermedia: XML and JSON
Ny

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://schema.org/

Media types (ll)

e |f you use your own media type be sure that hypermedia
controls:
—The URI of the remote resource
—The relation of the current resource with the remote one

—Try to include protocol information

 E.g. which method | need to execute / what is the format of the
request body

e |f you are using XHTML:
— Use <a> to have a link to another resource

— Use <form> when you:
e Include in the URI a query string
e Represent URIs that follow a certain pattern

Ivan Sanchez Milara Programmable Web Project. Spring 2023.

98

\l/

i

OULUN
YLIOPISTO

Domain specific media types. Creating >

links (1)

e Using xlink (http://www.w3.0rg/1999/xlink) attributes to create links:

— Establish a relation between a local XML element and
remote resources

e xlink: type="simple” : Simple relation between
current XML element and remote resource

e xlink:href="uri” :Provides the path to the linked resource
e Other voluntary attributes are:

— xlink:role isa URIwhich indicates the relation between two resources

— xlink:title is a human readable label which describes the link

<users xmlns:xlink="http://www.w3.0rg/1999/x1ink>
<user xlink:type="simple” xlink:href="http://forum/users/axel”>
<nickname>Axel</nickname>
</user>
<user xlink:type="simple” xlink:href="http://forum/users/bob”>
<nickname>Bob</nickname>
</user>
</users>

— More complicated relations can be established using
other association types: extended, locator, arc, resource

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://www.w3.org/1999/xlink

Domain specific media types. Creating '®
links (I1)

e Using atom:link (http://www.w3.0rg/2005/Atom)
— Element <atom:1link> contains attributes to establish a relation between
resources:

 href: indicates the URI of the linked resource

e rel: establish the semantic association between the resources. Different values:
- self: the link points to the resource itself
— More values on next slide

» type: indicates the mime type of the representation

<users xmlns:atom="http://www.w3.0rg/2005/Atom”>
<user>
<atom:1link rel="self” href="http://forum/users/axel”>
<nickname>Axel</nickname> <—— XML
</user>
<user>
<atom:link rel="self” href="http://forum/users/bob”>
<nickname>Bob</nickname> JSON
</user>
</users> l
{users: |
user: {nickname:”Axel”,link:{rel:”self”,href=" http://forum/users/axel”}},
user: {nickname:”Bob”,link:{rel:”self”,href=" http://forum/users/bob”}}
1}
s/
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

http://www.w3.org/2005/Atom

Domain specific media types. Creating links ***

(111)
e Using atom:link (cont)
— More values for rel attribute:
salternate: alternate representation of the same resource
*edit: clients can edit the resource using this link

erelated: the linked resource has certain relation with the current
reource

e via: identifies the source for the information of current resource

e enclosure: the link is a resource which contains current resource
previous, next: previous and next elementin a list

e first, last: first and last element of a list

e Application developer can create application specific relations, expressed
as URI

—Very useful to manage application flow
Drawback: it is application dependant

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

102
Domain specific media types. Creating links (V)

e URI templates permit exposing an unlimited number of resources of the same type using
just one URI
— Parametrize URIs with variables that can be substituted at runtime
e Variable names are shown between {}

— Useful for the client to deliver parameters for an algorithm:
* http://forum/messages?older than={timestamp}&maxReturned={max returned}

— And to access a resource from a large set:
* http://forum/users/{user id}
¢ In this case the client should have some knowledge on possible values
URI templates are generated in the servers

— They are parts of the links to other resources included in a resource representation; clients can fill the
templates

However, there are no conventions for representing URI templates
Do not abuse URI templates

— If you doubt then do not use URI templates

— Use links when the set of results is known

Use URI templates for:
— Documentation
— To identify resources in servers that accept URI template syntax

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

103

Profiles

e A profile must define:

— Link relations:

e Describing the state transition that will happen if the client triggers a
hypermedia control (protocol semantics)

e Usually implemented as 'rel’” attribute

— http://www.iana.org/assignments/link-relations/link-relations.xhtml

— Must be documented unless rel attribute is defined by IANA
e Do not forget to include the method that is utilized

— Semantic descriptors:

* Describing the meaning of properties in the representation (application
semantics)

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://www.iana.org/assignments/link-relations/link-relations.xhtml

104

IJANA link relations

e Global register containing about 60 relations.
— http://www.iana.org/assienments/link-relations/link-relations.xhtml

— Some useful relations:
« collection and item to create collections.

e first, last, next and previous for pagination

- replies to described message thread

+ latest-version, successor-version, working-copy for history of a resource state
. edit and edit-media to cover update/delete a resource

e Some document media types defines its own possible relations
e Some profiles include also relations

e |f you wanna use your own link relation
— Use extension relations: http://mydoma.in/myrelation

e Microformats Wiki also contains a big set of relations:

— http://microformats.org/wiki/existing-rel-values
— DO NOT USE THEM AS SUCH IF YOU HAVE NOT DEFINED THEM IN YOUR \l/

PROFILE [I.Iu1.l:|

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://mydoma.in/myrelation
http://microformats.org/wiki/existing-rel-values

105

Linking to a profile

e Using the profile Link relation:
— RFC 6906 defines a rel called profile
— Can be used in any re1 attribute: 1inks (Siren or Collection+Json); 1ink
defined in HTML, HAL or in the .ink HTTP header.

<html>
<head>
<link href="http://microformats.org/wiki/hcard" rel="profile">

* Using the profile Media Type parameter:
— Added as parameter in the Content-Type header

Content-Type = application/collection+json;profile=http://myprofile

e Using special purpose hypermedia controls defined in some media types.

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://myprofile/

106

Steps 6. Design the resource representation using
hypermedia formats

Forum example. Message resource.
Media type: HAL

" _links":{
"self":{"href":"/forum/api/messages/msg-
2/" "profile":"http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum Message"},
"collection": {"href":"/forum/api/messages/", "type":"application/vnd.collection+json", "profile":"http://atlassi
an.virtues.fi:8090/display/PWP/Exercise+3#{Exercise3-Forum Message'},
"author": {"href":"/forum/api/users/AxelW/", "type":"application/hal+json", "profile":"http://atlassian.virtues.f
i:8090/display/PWP/Exercise+3#Exercise3-Forum User"},
"in-reply-to":{"href":null "profile":"http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-
Forum Message"}

}
"template" : {
"data" : [
{"prompt" : "", "name" : "headline", "value" : "", "required":true},
{"prompt" : "", "name" : "articleBody", "value" : "", "required":true},
{"prompt" : "", "name" : "editor", "value" : "", required:false},
{"prompt" : "", "name" : "author", "value" : "", required:false},
1
}

"articleBody":"I am using a float layout on my website but I've run into some problems with Internet Explorer. I
have set the left margin of a float to 100 pixels, but IE uses a margin of 200px instead. Why is that? Is this one
of the many bugs in IE?",

"headline":"CSS: Margin problems with IE",

"editor":null,

"author": "AxelW"

-

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

v

http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_User
http://atlassian.virtues.fi:8090/display/PWP/Exercise+3#Exercise3-Forum_Message

107

Step 7. Define protocol specific attributes

e The resource representation is encapsulated in the HTTP

request/response message
—The HTTP body contains the representation
—The HTTP entity headers contain metadata about the representation e.g.
lts media type. Some important headers are:

- Content-Type: Mmime-type of the representation format
— A list of mime types can be found in RFC2045 and RFC2046

- Content-Length: Size of the body
- Accept: formats a client understands (only in HTTP request)
- Accept-Encoding: encoding accepted for the body

e Other headers can be used for other purposes:
— caching, authorization...

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

Step 7 - Define protocol specific attributes o

e An HTTP response includes a status code indicating how the request was
processed in the server

— Headers provide additional information

e Response code + headers indicating success:

— GET
200 OK No headers Successful request
304 Not Modified No headers The client must get the resource from the cache
— DELETE
200 OK No headers Successful request. The HTTP body might contain a status

message

— POST and PUT

Successful creation. Location header indicates the URI of the

201 Created Location
resouce

200 OK No headers The r?source existed and has been modified. The Body could
contain the new resource

301 Moved permanently Location The data sent caused the resource URI to be changed

Vs

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

109

Step 8 - Define possible errors

e Define when and how a request could fail
— Define the error message in the response body. It should be another resource

* Define also the response status codes and the headers of the response:
— GET and DELETE

Resource was not found. HTTP body message might have

404 Not Found No headers .
contained an error message.
Th t found. Location h i

303 See Other Location e resource was not found. Location header provides a
related resource.

400 Bad Request No header The URI contained some erroneous fields or parameters

The representation format is not supported

415 Unsopported Media Type No headers Iy

The representation tried to change the resource

409 Conflict No header .
to a state that is not allowed
400 Bad Request No header The resource representation contained an invalid value 1,
Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

-

Build the HTTP envelope.
Include method information.

Headers and message
body if needed.

-

UCheck HTTP response code.
U Proceed according to the
response code:
= process the message body
= perform needed actions
» handle exceptions

"

Ivan Sanchez Milara

110

Basic workflow between
client and web service

Send HTTP request

Send HTTP response

1

Programmable Web Project. Spring 2023.

UCheck the HTTP method \
UCheck the headers
UParse the message body
UPerform the requested action
UBuild the response message

= HTTP response code

= headers

= message body

/
N\

CE

OULUN
YLIOPISTO

Forum example - GET

e Get all messages from the Sports category

— HTTP Method: GET
— URL: http://forum.example.com/Category/Sports
— Returns:

e Onsuccess: 200 OK + XML message body

e Onerror: 401 Unauthorizedor 404 Not found

111

Request HTTP envelope

GET Category/Sports/ HTTP/1l.1
Host: forum.example.com
Accept: text/xml
Accept-Encoding: gzip,deflate
Accept-Charset: windows-

1251 ,utf-8;9=0.7,*;9=0.7

Ivan Sanchez Milara

Successful HTTP response envelope

HTTP/1.1 200 OK

Date: Sun, 12 Sep 2010 11:30:12 GMT
Transfer-Encoding: chunked
Content-Type: text/xml;
Content-Length: length;

<?xml version="1.0" encoding="UTF-8"?>
<msg:Thread>
<msg:Message messagelID="msg-3">
<msg:Registered userID="user-7">
<user:Nickname>HockeyFan</user:Nickname>
<user:Avatar file="avatar 7.jpg"/>
</msg:Registered>
<msg:Title>Edmonton's goalie</msg:Title>
<msg:Body>Does anyone know where Jussi...

(o..) \|/

</msg:Message>
v

<msqg:Thread>

Programmable' Web Project. Spring 2023. OULUN
YLIOPISTO

Forum example - POST e

e Post the message into Science category
— HTTP Method: POST
— URI: http://forum.example.com/Category/Science/Messages
— Request: XML message body
— Returns:
e On success: 201 Created (Location header tells the URI of created message)
e On error: 400 Bad Request or 409 Conflict

Request HTTP envelope Successful HTTP response envelope

POST Category/Science/Messages HTTP/1.1 HTTP/1.1 201 Created

Host: forum.example.com Date: Tue, 19 Sep 2010 06:11:22 GMT

Accept: text/xml Content-Type: text/xml; charset=iso-8859-1
Accept-Encoding: gzip,deflate Content-1L th: _length

Accept-Charset: windows-1251,utf- ocation: >
8,9=0.7,*%;9=0.7 http://forum.example.com/Category/Science/Messages/msg-
Content-Type: text/xml;charset=utf-8 <?xml version="1.0" encoging="UTE-8"?>
Content—Length: length <msg:Message messagelD replyTo="msg-1">

5 N o <msg:Anonymous>Science guru</msg:Anonymous>
<?xml version="1.0" encoding="UTF-8"?> <msg:Title>In case</msg:Title>

<msg:Message messageID="" replyTo="msg-1"> <msg:Body>Just in case you can't ...
<msg:Anonymous>Science guru</msg:Anonymous> ()

...) </msg:Message>
</msg:Message> 9 g

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

113

Forum example - DELETE

e Delete certain message
— HTTP Method: DELETE
— URL: http://forum.example.com/Category/Science/Messages/msg-4
— Returns:
e On success: 204 No Content
e On error: 401 Unauthorized or 404 Not Found

Request HTTP envelope Error HTTP response
DELETE HTTP/1.1 404 Not Found
Category/Science/Messages/msg-4 Date: Tue, 19 Sep 2010 06:11:22 GMT
HTTP/1.1 Content-Type: text/html; charset=iso-8859-1
Host: forum.example.com Content-Length: length
Accept: text/xml, text/html Keep-Alive: timeout=15, max=96
Accept-Encoding: gzip,deflate Connection: Keep-Alive
Accept-Charset: windows-1251,utf- <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
8;9=0.7,*;9=0.7 <html>
Keep-Alive: 300 <head>
Connection: keep-alive <title>404 Not Found</title>

</head>

<body>

<h1l>Not Found</hl>
<p>The requested message msg-4 was not found on
this server.</p>
</body> Ny

</html> ["\:’"]

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

114

HYPERMEDIA DRIVEN DESIGN

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

Resource driven vs Hypermedia
driven

e Resource driven design
— MOST utilized approach nowadays when people talk about REST
—Nouns is the most important

e Hypermedia driven design
— ACTION is the most important

— Acknowledges that the state transitions are even more important
than the state itself.

e | want to do a thing.
e Which verbs should | use to do that?

— Previous state transitions will provide ‘affordances’ that indicates
what actions | can perform next and a way of figuring out more
information about those affordances if we do not know it already.
Ny

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

116

Advantages and disadvantages

PROS

Ivan Sanchez Milara

promote scalability

allow resilience towards
future changes

— Clients and serves ¢
evolve separately

promote decoupling
and encapsulation

— All request are self-
contained o

— Facilitates evolvability

Code on demand
promotes extensibility *

CONS

NOT latency-tolerant
design

caches can get stale

Not as efficient on an
individual request level
as other designs

More verbose request /
responses

Usually, more complex
clients

\l/

i

Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

Ivan Sanchez Milara

Design process ()

1.Evaluate processes

2.Create state machine

3. Evaluate media types
4.Create or choose media types
5.Implementation!
6.Refinements

Programmable Web Project. Spring 2023.

\l/

i

OULUN
YLIOPISTO

118

Design process (ll)
e Documenting a REST API => defining the media types.

“A REST APl should spend almost all of its descriptive effort in defining the
media type(s) used for representing resources and driving application
state, or in defining extended relation names and/or hypertext-enabled
mark-up for existing standard media types. Any effort spent describing
what methods to use on what URIs of interest should be entirely defined
within the scope of the processing rules for a media type (and, in most
cases, already defined by existing media types)”

Roy Fielding. REST APls must be hypertext-driven

e The media type is the only sort of contract between the
client and the server

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

119

Hypermedia driven APIs. Examples.

Simpler clients. No memorize workflow, objects or URL. Just implement how
to process hypermedia controls.

To-Do CRUD App Demo To-Do Hypermedia Demo App

: zwﬁu1 - Ve var thisPage = function() {
g-searchur, tasks/search?tex }'3
g.compl enu "!J’Ax'.,(rnp'.a‘..‘- 3 var g (},
ring syst g-msg = {};
function init() (EED) g.listurl 'Jtasks/';
prime ths ran
function refreshList() () function init() (@)

funct;on :ear-chu'.:t;l (=) el st
function showResponse() {EEH)}
cun:'tion ic;:ToList(‘l () handle po yperme
function showControls() {EED)

andle “complete . X .
function completeIten() () function clickButton() {E3}
arse the returned documant handle network request/response
function showtist() {EHN) function makeRequest(f, context,) (&}
function initButtons() (E) function processnesponse(w RS\ Conce I') ‘m1

function clickButton() {EN)
var that = {};
andle network regue » . that.init = init;
function makeReguest(href, context, body) {EEE) return that; ’
function processResponse(sjax, context) (@) 4

Mike Amundsen. REST, Hypermedia, and the Semantic Gap: Why "RMM Level-3 REST" is not
enough.

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

https://www.youtube.com/watch?v=UkAt9XSOfaE

120

Hypermedia driven APIs examples

e Skype for business:
— https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia

e Paypal is promoting the use of Hypermedia in their REST API:
— https://developer.paypal.com/docs/api/overview/

— https://developer.paypal.com/docs/integration/direct/paypal-rest-
payment-hateoas-links/

e Amazon AppStream:

— http://docs.aws.amazon.com/appstream/latest/developerguide/api
-reference.html

e Foxycart:
— https://api.foxycart.com/docs#

e Zalando:
— http://zalando.github.io/restful-api-guidelines/index.html

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN

YLIOPISTO

https://msdn.microsoft.com/en-us/skype/ucwa/hypermedia
https://developer.paypal.com/docs/api/overview/
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/
http://docs.aws.amazon.com/appstream/latest/developerguide/api-reference.html
https://api.foxycart.com/docs
http://zalando.github.io/restful-api-guidelines/index.html

121

References

1.“RESTful Web Services” by Leonard Richardson and Sam Ruby
2.“RESTful Web APIs” by Leonard Richardson, Mike Amundsen and Sam Ruby
3.“RESTful Web Services Cookbook” by Subbu Allamaraju

4.“REST in practice. Hypermedia and Systems Architecture” by Jim Webber, Savas
Parastidis and lan Robinson.

5.Representational State Transfer (REST), Roy Thomas Fielding. Available at
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding dissertation.pdf

6.“Peer-to-Peer Systems and Applications” Ralf Steinmetz KlausWehrle (Eds.)
Available at http://www.springerlink.com/content/g6h805426g7t/#section=586017&page=1
7. ATOM http://www.ietf.org/rfc/rfc4287.txt
8.HTTP 1.1 http://tools.ietf.org/html/rfc2616
9.JSON http://www.json.org/

\l/

i

Ivan Sanchez Milara Programmable Web Project. Spring 2023. OULUN
YLIOPISTO

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.springerlink.com/content/g6h805426g7t/
http://www.ietf.org/rfc/rfc4287.txt
http://tools.ietf.org/html/rfc2616
http://www.json.org/

	Slide 1: Programmable Web Project Part 2: Programmable Web Spring 2023
	Slide 2: The World Wide Web and technologies
	Slide 3: What is the World Wide Web?
	Slide 4: TECHNOLOGIES FOR THE WWW
	Slide 5: Client server model
	Slide 6: DATABASES
	Slide 7: Examples - Relational
	Slide 8: Examples – Non-relational
	Slide 9: TRANSPORT PROTOCOL: HTTP
	Slide 10: HTTP Request parts
	Slide 11: HTTP Response parts
	Slide 12: Data serialization languages
	Slide 13: JSON
	Slide 14: Hypermedia
	Slide 15: Hypermedia (HTML)
	Slide 16: Hypermedia (HTML)
	Slide 17: Hypermedia (HTML)
	Slide 18: CLIENTS
	Slide 19: Web browser. An Human Driven client.
	Slide 20: Types of clients
	Slide 21: RPC technologies examples grpc
	Slide 22: OLD SOAP WEB SERVICES
	Slide 23: WSDL
	Slide 24: GRPC intro
	Slide 25: GRPC. Proto
	Slide 26: GRPC. Server
	Slide 27: GRPC. Client
	Slide 28: Types of service methods
	Slide 29: Programmable web
	Slide 30: What about current Web APIs (RPC or CRUD)?
	Slide 31: Programmable Web
	Slide 32: Web vs Programmable Web
	Slide 33: Hypermedia driven Web APIs
	Slide 34: Programmable Web Project Part 3: RESTful Web APIS Spring 2023
	Slide 35: Introduction to ROA
	Slide 36: REST (Representational State Transfer)
	Slide 37: REST Constraints
	Slide 38: REST
	Slide 39: ROA Introduction
	Slide 40: ROA pillars
	Slide 41: Forum Resource hierarchy
	Slide 42: Addressability
	Slide 43: Addressability in WWW
	Slide 44: Uniform interface (I)
	Slide 45: Uniform interface (II)
	Slide 46: Uniform interface (II)
	Slide 47: Uniform interface (III)
	Slide 48: Uniform interface in WWW
	Slide 49: Statelessness (I). State concept.
	Slide 50: Statelessness (II)
	Slide 51: Statelessness in WWW
	Slide 52: Connectedness (I)
	Slide 53: Connectedness (II)
	Slide 54: Connectedness in WWW
	Slide 55: RESTful WEB APIS. Hypermedia.
	Slide 56: Richardson Maturity Model
	Slide 57: Richardson Maturity Model
	Slide 58: Richardson Maturity Model
	Slide 59: Richardson Maturity Model
	Slide 60: Richardson Maturity Model
	Slide 61: Richardson Maturity Model
	Slide 62: RESTful and Hypermedia
	Slide 63: HATEOAS (I)
	Slide 64: HATEOAS
	Slide 65: HATEOAS
	Slide 66: HATEOAS
	Slide 67: HATEOAS
	Slide 68: HATEOAS
	Slide 69: HATEOAS
	Slide 70: Semantic challenge (I)
	Slide 71: Semantic Challenge (II) Semantic gap
	Slide 72: Semantic challenge (III)
	Slide 73: Media types
	Slide 74: Media types
	Slide 75: Media Types: Collection+JSON
	Slide 76: Mason
	Slide 77: Profile
	Slide 78: Twitter API
	Slide 79: Clients
	Slide 80
	Slide 81: Summary
	Slide 82: Programmable Web
	Slide 83
	Slide 84: Summary
	Slide 85: DESIGN oF RESTFul web APIs uSING ROA
	Slide 86: RESTful Web services design steps
	Slide 87: Forum Resource hierarchy
	Slide 88: Step 1 - Figure out the data set
	Slide 89: Step 2 - Split the data into resources (I)
	Slide 90: Step 2 - Split the data into resources (II)
	Slide 91: Step 3 - Name the resources with URIs (I)
	Slide 92: Step 3 - Name the resources with URIs (II)
	Slide 93: Step 4 – Establish the relation among resources
	Slide 94: Step 5 - Expose a subset of the uniform interface (I)
	Slide 95: Step 5 - Expose a subset of the uniform interface (II)
	Slide 96: Steps 6. Design the resource representation using hypermedia formats
	Slide 97: Media types (I)
	Slide 98: Media types (II)
	Slide 99: Domain specific media types. Creating links (I)
	Slide 100: Domain specific media types. Creating links (II)
	Slide 101: Domain specific media types. Creating links (III)
	Slide 102: Domain specific media types. Creating links (IV)
	Slide 103: Profiles
	Slide 104: IANA link relations
	Slide 105: Linking to a profile
	Slide 106: Steps 6. Design the resource representation using hypermedia formats
	Slide 107: Step 7. Define protocol specific attributes
	Slide 108: Step 7 - Define protocol specific attributes
	Slide 109: Step 8 - Define possible errors
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114: Hypermedia driven design
	Slide 115: Resource driven vs Hypermedia driven
	Slide 116: Advantages and disadvantages
	Slide 117: Design process (I)
	Slide 118: Design process (II)
	Slide 119: Hypermedia driven APIs. Examples.
	Slide 120: Hypermedia driven APIs examples
	Slide 121: References

