Ivan Sanchez Milara

Programmable Web Project
Part 1: Introduction

Spring 2025

Services and APIs
The World Wide Web

Technologies for the World Wide Web
* Backend: Business logic + data storage (databases)
Transport protocol: HTTP
Data serialization languages
Clients

Programmable Web

Programmable Web Project. Spring 2025.

s\,

g

OULUN
YLIOPISTO

SERVICES AND APIS

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Ivan Sanchez Milara

Web Services

Web services are logical units that provides certain
functionality.
They are application independent

— services can be used by other services and applications.

— services can incorporate the functionality of other services
(composite service)

’%

[Appllcatlon [Application J

Services need to communicate to the service

consumer:
— what functionality they provide
— which data formats they accept and produce
— what protocol they use

Programmable Web Project. Spring 2025.

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

Web Services

https://isonplaceholder.typicode.com/

Programmable Web Project. Spring 2025.

s\,

gl

OULUN
YLIOPISTO

https://jsonplaceholder.typicode.com/

Web Services

e Online services that are not prepared to human consumption (in
opposite to websites), but mainly machine-to-machine
communication.

—Web services require an architectural style to provide clear and unambiguous
interaction (clearly defined interfaces), because there’s no smart human being
on the client end to keep track.

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Microservices

e Set of small and autonomous services that work together.
e SRP -> SINGLE RESPONSIBILITY PRINCIPLE

— Business boundaries clear defined -> just a piece of functionality

— Each microservice runs in its own OS process.
e Change independently of each other

e Benefits:

—Technology heterogeneity Posts Friends Pictures

.- (python) F (go) i (Erlang)
— Resilience l l \
— Scaling MongoDB Neodj Blob DB

(Graph db)
— Easy of deployment
— Organizational alignment E—
— Composability Posts Friends 11 12 13
11 12 13 11
14 15 16

Building microservices. Sam Newman. O’Really Media

Ivan Sanchez Milara Programmable Web Project. Spring 2025.

s\,

g

OULUN
YLIOPISTO

APls and Web APIs

e APl = Application Programming Interfaces

e Defines how the service functionality is exposed by means of one or more
endpoints:
— Protocol semantics
— Application semantics

e Nowadays, web service word is in disuse => We use Web API instead

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Web API

HTTP Request

PYTHON
CLIENT
e
HTTP Response
BROWSER
CLIENT HTTP Request
)
HTML & CSS
e
$ % HTTP Response
Javascript ?[
HTTP Request
JAVA ——
CLIENT e
HTTP Response
HTTP Request
WEB ——)
SERVICE e

Ivan Sanchez Milara

HTTP Response

Web API

Programmable Web Project. Spring 2025.

Business Logic

sqL/
| NoSQL

: Database

Web Service
Or
Web API

s\,

g

OULUN
YLIOPISTO

Website vs Web API

e Gist:

— Github tool that allows sharing code and applications

— Website at: https://gist.github.com/

— API at https://developer.github.com/v3/gists/

— Gist clients: https://gist.github.com/defunkt/370230
e For instance, Sublime Text client: https://github.com/condemil/Gist

Ivan Sanchez Milara Programmable Web Project. Spring 2025.

s\,

gl

OULUN
YLIOPISTO

https://gist.github.com/
https://developer.github.com/v3/gists/
https://gist.github.com/defunkt/370230
https://github.com/condemil/Gist

11

ARCHITECTURAL STYLES

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

12

Architectural styles

 Defines a set of design principles and constraints for building and interacting
with software systems over a network

— It provides guidelines for structuring APl communication and determines how clients and
servers exchange data.

— Does not define an architecture but requirements for the architecture

The National Building Code of Finland

The Land Use and Building Act (132/1999) specifies the general conditions concerning building, substantive
technical requirements, building permit procedure and building supervision by the authorities. The substantive
technical requirements concern the strength and stability of structures, fire safety, health, user safety,
accessibility, noise abatement and noise conditions, and energy efficiency. Besides the substantive technical
requirements, section 117 of the act lays down the authority to issue decrees concerning the use and maintenance
quidelines for buildings. Further provisions and guidelines concerning building are issued in the National Building
Code of Finland.

Traditionally the regulations in the Building Code have applied to new buildings only. In the case of renovation or
alterations the regulations have been applicable only when required due to the type and extent of the measure or
use of the building or part of it that may be changed (unless specifically regulated otherwise). The aim is to allow
flexibility in the application of the building regulations, to the extent possible considering the characteristics and
special features of the building,

Building codes

Planning and supervision

Strength and stabllity of structures

Fire safety

Health \ I /

¥ Safety of use w

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

13

Architectural styles

s REST

e CRUD
e Hypermedia (HATEOAS)

RPC

e SOAP
e GraphQL

Pub/Sub (Asynchronous Event-Based Collaboration)

s\,

gl

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

14

REST AND HYPERMEDIA

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

15

REST (Representational State Transfer)

e Architectural style proposed by Roy Thomas Fielding.
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding dissertation

pdf
—Does not define an architecture but requirements for the
architecture
® Representation

— Resource-oriented: operates with resources.

e Resource: Any piece of information that
can be named. Identified generally by URL

e State:
—value of all properties of a resource at the certain moment.
® Transfer: State can be transferred
— Clients can:
1) retrieve the state of a resource and
2) modify the state of the resource

— UNIFORM interface N

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Ivan Sanchez Milara

REST (Representational State Transfer)

Y

architectures:

* RPC
« REST

Programmable Web Project. Spring 2025.

| want to know the
content of the page 1 of
the notebook.

16

s\,

gl

OULUN
YLIOPISTO

Ivan Sanchez Milara

REST (Representational State Transfer)

Y

architgctures
for segrviegs:

« RPC
« REST
e Pub/sub

Programmable Web Project. Spring 2025.

| want to edit the content
of the page 1 of the
notebook

17

s\,

gl

OULUN
YLIOPISTO

Ivan Sanchez Milara

REST (Representational State Transfer)

iy

architgctures:

* RPC
* REST

Programmable Web Project. Spring 2025.

| want to tear off the
page 1 of the
notebook.

18

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

REST (Representational State Transfer)

Programmable Web Project. Spring 2025.

| want start writing in a
different page of the
notebook

19

s\,

gl

OULUN
YLIOPISTO

Ivan Sanchez Milara

Instagram Platform

Instagram Graph API

Instagram Basic Display
API

Overview
Get Started
Guides
Reference
Access Token
Error Codes
Me
Media
Oauth Access Token
Oauth Authorize
Refresh Access Token
User
Changelog
Sharing to Feed
Sharing to Stories
oEmbed
Embed Button

Business Login for
Instagram

Instagram API

On This Page

Reference

Access Tokens Media

Endpoint Description
GET /oauth/authorize Get the Authorization Window.
POST /ocauth/access token Exchange an Authorization Gode for a short-lived Instagram User Access Token.

Exchange a short-lived Instagram User Access Token for a long-lived Instagram

User Access Token.

GET /refresh access_token Refresh a long-lived Instagram User Access Token.

Authorization Window

Endpoint Description

GET /oauth/authorize Get the Authorization Window.
Media

Endpoint Description

GET /{m=dia—id} Get fields and edges on an image, video, or album.

Get a list of images and videos on an album.

GET /{user—id}/media Get a list of images. videos, or albums on a User.

https://developers.facebook.com/docs/instagram-api/

e.g. Comment Moderation: https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

Programmable Web Project. Spring 2025.

20

s\,

OULUN
YLIOPISTO

https://developers.facebook.com/docs/instagram-api/
https://developers.facebook.com/docs/instagram-api/guides/comment-moderation

Ivan Sanchez Milara

REST APIs

ma CRUD

e Most extended approach.
e Most of Web APIs nowadays
e Not follow strictly REST principles

e Follows strictly REST principles

Programmable Web Project. Spring 2025.

21

UUUUU

Ivan Sanchez Milara

22

Hypermedia driven Web APIs

e Follows strictly Fielding dissertation principles.

— REST APIs must be hypertext driven:
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven

e Uses Hypermedia as the Engine of the Application State

— Hypermedia describes the actions that you can perform with the
resources.

e Client does not memorize operations nor workflow. Everything is in the
messages

e Documentation reduced drastically: messages are documented by
themselves

— A REST API should spend almost all of its descriptive effort in defining
the media type used for representing resources and driving application
states

e Easier to create general clients
— Example: RSS and Atom PUB. Multiple clients can read the same RSS P

feed.
L

Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Ivan Sanchez Milara

Programmable Web Project. Spring 2025.

23

RPC

s\,

gl

OULUN
YLIOPISTO

24

RPC-style Web APIs

* RPC: Remote procedure call

— A method or subroutine is executed in another address space,
without the programmer explicitly encoding the details of the

remote interaction.
e An RPC-style Web API accepts an envelope full of data from
its client and sends a similar envelope back.

—The method and the scoping information are kept inside the
envelope, or on stickers applied to the envelope.

Dear Wt Sanchey:

We would need the list of grades of the
cournse PUP {or year 2025 and 2024,
Please, seud them in an Excel file wit the

e secretanice, N

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN

YLIOPISTO

25

RPC-style Web APIs

eEvery RPC-style Web API defines a brand new vocabulary: method
name, method parameters

eSome examples:
—XML-RPC
—SOAP

—gRPC

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

https://grpc.io/

26

RPC

<?xml version="1.0"7>
<methodCall>
<methodName>examples.getStateName</methodName>
<params>
<param>
<value><id>40</id4></value>
</param>
</params>
</methodCall>

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

27

GraphQL

e Mixed of RPC and REST API concepts
— Created by Facebook.

e GraphQL is a query language APIs, and a server-side runtime for executing queries
by using a type system defined for the data.

Describe your data Ask for what you want Get predictable results

Project
String project
tagline

https://graphal.org/
https://sraphal.org/learn/queries/ \l,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN

YLIOPISTO

https://graphql.org/
https://graphql.org/learn/queries/

Ivan Sanchez Milara

https://www.altexsoft.com/blog/engineering/graph
gl-core-features-architecture-pros-and-cons/

GraphQL

Architecture

Organized
in terms of

Operations

Data fetching
Community

Performance

Development
speed

Learning curve

Self-documenting

File uploading

Web caching

Stability

Use cases

Programmable Web Project. Spring 2025.

GRAPHQL VSREST

GraphQL

client-driven

schema &type system

Query
Mutation
Subscription

specific data with
asingle APl call

growing

(via libraries built on top)

less error prone:
automatic validation
and type checking

multiple microservices
mobile apps

REST

server-driven

endpoints

Create
Read

Update

Delete

fixed data with
multiple APIcall

large

multiple networl
take up more time

slower

moderate

better choice
for complex queries

simple apps
resource-driven apps

e

28

s\,

OULUN
YLIOPISTO

https://www.altexsoft.com/blog/engineering/graphql-core-features-architecture-pros-and-cons/
https://www.altexsoft.com/blog/engineering/graphql-core-features-architecture-pros-and-cons/

29

RPC TECHNOLOGIES EXAMPLES

GRPC

Ivan Sanchez Milara Programmable Web Project. Spring2025. . 0OULUN
IIIIIIIII

30

OLD SOAP WEB SERVICES

REQUEST

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" >
<soap:Body>
<m:getUserFirstName xmlns:m="http://service.forum.rsi.isg.oulu.fi">
<m:userId>user-3</m:userId>
</m:getUserFirstName>
</soap:Body>
</soap:Envelope>

RESPONSE

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<getUserFirstNameResponse xmlns="http://service.forum.rsi.isg.oulu.fi">
<getUserFirstNameReturn>Axel</getUserFirstNameReturn>
</getUserFirstNameResponse>
</soap:Body>
</soap:Envelope>

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

WSDL
<wsdl:definitions name="nmtoken"? tar;lN_ar;;sp:ac:a:"l.;'? =-_j__ ROOt e I eme I"It

<import namespace="uri" location="uri" (ns for binding technology, ns for defined types) />

<wsdl:types> 1_Types

<xsd:schema ... ns for defined types /> definition
<— extensibility element: elements, types definitions—>
</wsdl:types= — Note. WSDL does not

restrict types or elements
in messages. Application
types are named as

<wsdl:message name="nmtoken™>
<part name="nmtoken" element="gname" type="qname"/>*

</wsdl:message> extensibility elements and
<wsdl:portType name="nmtoken"> are defined in the schema
<wsdl:operation name="nmtoken"> associated to that type.
<wsdl:input name="nmtoken" message="gname"></wsdl:input>
<wsdl:output name="nmtoken" message="gname"><fwsdl:output> Abstra ct
<wsdl:fault name="nmtoken" message="gname"> </wsdl:fault>
</wsdl:operation> definition

</wsdl:poriType> GsssEsisooosEmIooToooEmIoSTIoIITToC
<wsdl:binding name="nmtoken"type="gname">
<-- extensibility element: reference to binding technology--= Concrete
<wsdl.operation name="nmtoken"> —
< extensibility element: reference to binding technology-—= d efl n ition
<wsdl:input> <-- extensibility element : ref. to binding tech.—> </wsdl:input>
<wsdl:output> <-- extensibility element: ref. to binding tech.—> <fwsdl:output=
<wsdl:fault name="nmtoken"><-- extensibility element --> </wsdl:fault>=
</wsdl:operation=>
</wsdl:binding=>
<wsdl:service name="nmtoken">
<wsdl:port name="nmtoken" binding="gname">
<-- extensibility element: reference to binding technology--=
</wsdl:port>
</wsdl:service>
</wsdl:definitions=>

Note. WSDL main
elements definition is
technology agnostic.

="nmtoken” = "some name”
="gname” = "some —

Ivan Sanchez Milara Programmable Web Project. Spring 2025.

31

s\,

gl

OULUN
YLIOPISTO

Ivan Sanchez Milara

GRPC intro

e Based on Protocol Buffers
— Google technology for serializing data structures

gRPC
Stub

Ruby Client

C++ Service

Android-Java Client

https://grpc.io/docs/what-is-grpc/introduction/

Programmable Web Project. Spring 2025.

32

s\,

gl

OULUN
YLIOPISTO

https://developers.google.com/protocol-buffers/docs/overview
https://grpc.io/docs/what-is-grpc/introduction/

Ivan Sanchez Milara

GRPC. Proto

syntax = "proto3";

enum BookCategory {
MYSTERY = 0,
SCIENCE_FICTION = 1;
SELF_HELP = 2;

}

message RecommendationRequest {
int32 user_id = 1;
BookCategory category = 2;
int32 max_results = 3;

}

message BookRecommendation {
int32 id = 1;
string title = 2;

}

message RecommendationResponse {
repeated BookRecommendation recommendations = 1;

}

service Recommendations {
rpc Recommend (RecommendationRequest) returns (RecommendationResponse);

}

https://realpython.com/python-microservices-grpc/

Programmable Web Project. Spring 2025.

Compiled to
programming
language
structure
(objects)

33

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

GRPC. Server

class RecommendationService(recommendations_pb2 grpc.RecommendationsServicer):

def Recommend(self, request, context):
if request.category not in books_by category:
context.abort(grpc.StatusCode.NOT_FOUND, "Category not found")

books for_category = books by category[request.category]
num_results = min(request.max_results, len(books for_ category))

books to recommend = random.sample(
books for_category, num_results

)

return RecommendationResponse(recommendations=books_ to_ recommend)

https://realpython.com/python-microservices-grpc/

Programmable Web Project. Spring 2025.

34

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

GRPC. Client

>>> channel = grpc.insecure_channel("localhost:50051")
>>> client = RecommendationsStub(channel)
>>> request = RecommendationRequest(
user_id=1, category=BookCategory.SCIENCE_FICTION, max_results=3
)

>>> client.Recommend(request)

https://realpython.com/python-microservices-grpc/

Programmable Web Project. Spring 2025.

35

s\,

g

OULUN
YLIOPISTO

36

Types of service methods

e Unary: the client sends a single request to the server and gets a single
response back, just like a normal function call.

* Server streaming RPCSs: client sends a request to the server
and gets a stream to read a sequence of messages back.

— The client reads from the returned stream until there are no more messages.
— gRPC guarantees message ordering within an individual RPC call.

* Client streaming RPCSs: the client writes a sequence of
messages and sends them to the server, again using a provided stream

— Once the client has finished writing the messages, it waits for the server to read them
and return its response.

— gRPC guarantees message ordering within an individual RPC call.

* Bidirectional streamming RPCSs: mix of two previous.

s\,

gl

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Ivan Sanchez Milara

Programmable Web Project. Spring 2025.

PUB/SUB

37

s\,

gl

OULUN
YLIOPISTO

Pub / Sub

e Some services emit events (user entered the room)

e Some services are subscribed to those events

—When the publisher publish the events the subscriber receives the event

e Generally a broker is in charge of coordination:
— Producers publish event to the broker
— Broker handle subscriptions and inform when an event arrives

e Complex solution BUT creates effective loosely-couple solutions.

e E.g. mqtt, rabitmq ...

Ivan Sanchez Milara Programmable Web Project. Spring 2025.

38

s\,

g

OULUN
YLIOPISTO

39

Pub / Sub

20 L ONIvERS Y , |
- . CFOULU rare =

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

40

Pub / Sub

~_ UNIVERSITY ' —
£ OFOULU ‘ =t

s\,

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Ivan Sanchez Milara

Pub / Sub

NG 1o -

[

M R —:

Programmable Web Project. Spring 2025.

41

s\,

gl

OULUN
YLIOPISTO

42

Pub / Sub

UNIVERSITY
OF OULU

s\,

gl

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

The World Wide Web

Ivan Sanchez Milara

Programmable Web Project. Spring 2025.

43

s\,

gl

OULUN
YLIOPISTO

44

What is the World Wide Web?

TIMBERNERS-LEE

https://www.youtube.com/watch?v=0M6XIICm go&start=18&end=190&autoplay=1

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay=1
https://www.youtube.com/watch?v=OM6XIICm_qo&start=18&end=190&autoplay=1

Ivan Sanchez Milara

What is the World Wide Web?
Goal: Distribute data
eHuman consumption (H2M)
eHypertext

eUniform APl and technologies
eSingle client (Web browser)

Programmable Web Project. Spring 2025.

45

UUUUU

46

World Wide Web success. Scalability

1.7M pieces of content

5.9M searches

EVENT e . i ictri
bl @ o Web is distributed

$12.9K

D |
CRYPTO EVERY

BUYERS PURCHASE §(O ||
$90.2M in cryptocurrency . M I NUTE 0
OF THE DAY

$ 1
7 O
o

VENMO TINDER 1 H
© it Web is massively decoupled
$437.6K AMAZON YOUTU 1.1M times
SHOPPERS SPEND @ USERS UPLOAD
$443K 500 hours of vid
VIEWERS SPEND
1M hours

STREAMING

(@) o)

DOORDASH 104.6K hours

DINERS PLACE SPENTIN

$76.4K in orders 53](35'5“ WEb is dynamic

DATA NEVER SLEEPS 1.0 VS. 10.0

66K

s\,
Source (2024) https://www.domo.com/data-never-
sleeps w
Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN

YLIOPISTO

https://www.domo.com/data-never-sleeps
https://www.domo.com/data-never-sleeps

48

TECHNOLOGIES FOR THE WWW

*Backend: Business logic + data storage (databases)
*Transport protocol: HTTP

*Data serialization languages

*Clients

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Ivan Sanchez Milara

49

Client server model

=

Clients .

;Ii / Server

© David Vignoni LGPL license \ I /
https://en.wikipedia.org/wiki/Client%E2%80%93server_model#/media/File:Client-server-model.svg w
Programmable Web Project. Spring 2025. OULUN

YLIOPISTO

Ivan Sanchez Milara

Programmable Web Project. Spring 2025.

BACKEND

50

s\,

gl

OULUN
YLIOPISTO

51

Backend

eStores application data persistently
—DATABASE

eDefines how to process request from the client and process the data
according to the requests coming from the client

—BUSINESS LOGIC

eExpose the data using a defined API

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

52

DATABASES

s\,

gl

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Ivan Sanchez Milara

Definition

e Databases emerged to solve challenges of storing and managing
huge amounts of data

e A database:

— is a data structure
— stores organized information
— can be easily accessed, managed and updated

e DBMS (Database Managing System) is the software that allows
creating, managing and storing database structures.
— Responsible for data integrity, recovery and access
— Provides a way for extract or modify the data

e There are different ways to model the data in the database

— Lately divided into relational models and non-relational models

Programmable Web Project. Spring 2025.

53

s\,

g

OULUN
YLIOPISTO

54

ACID properties

e Atomicity
— Each transaction is atomic.

— If one part of the transaction fails the whole transaction fails and the database is not
modified.

e Consistency
— Databases moves from one valid state to another valid state in each transaction.
— A state is valid if meets all the constraints
e [solation
— Concurrent access is processed as serial access.
— Not completed transactions might not be visible to other users
e Durability
— Once a transaction is committed it remains in the db.

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN

YLIOPISTO

Ivan Sanchez Milara

Relational — Non-relational

e Relational:

— Database model developed by E.F. Codd in 1970

e Codd, Edgar F (June 1970). "A Relational Model of Data for Large Shared
Data Banks"

— Data is represented in terms of tuples (rows), grouped into relations
(tables) that can be linked with each other.

— Developed almost in parallel with SQL language

e Non-Relational:
— Sometimes miscalled Non SQL databases
— Umbrella that gathers different databases that are not relational.

— Data is not organized in related tables.

e Some store objects, some store key-value pairs,
some store documents

— More flexible and scalable

Programmable Web Project. Spring 2025.

55

s\,

g

OULUN
YLIOPISTO

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

56

RDBMS Concepts

* CRUD

— Databases stores data persistently

—There are four basic functions to manage persistent data:
¢ Create
* Read
e Update
e Delete

e ORM (Object relational mapping)

—To access a relational database from an object oriented language context (PHP, Python,
Java...)

e interface translating relational logic to objects logic is needed.
e Such interface is called Object-relational mapping (ORM, O/RM, and O/R mapping).

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

SQL vs NoSQL vs NewSQL

OldsQL | NoSQL | NewSQL
Relational Yes No Yes
saL Yes No Yes
ACID transactions Yes No Yes
Horizontal scalability No Yes Yes
Performance / big volume No Yes Yes
Schema-less MNo Yes No

Ivan Sanchez Milara Programmable Web Project. Spring 2025.

57

s\,

gl

OULUN
YLIOPISTO

Examples - Relational

e Relational databases are still the most commonly used.
e Relational databases are mainly composed by tables.

e A table is formed by zero (empty) or more rows.

e A row consists of one or more fields

— Each has a certain datatype. (columns)

FirstName Surname Personalid
John Smith 3321
Jack Johnson 4352
Mary Smith 9807

e Some examples are: PostgreSQL, MySQL, SQLite

Ivan Sanchez Milara Programmable Web Project. Spring 2025.

58

s\,

g

OULUN
YLIOPISTO

Examples — Non-relational

— MongoDB
e Scalable, open source database
* JSON based data store: BSON
e Document-oriented database
— Database formed by Collections of Documents
e Example of MongoDB document:

{
name: “jim”,
surname: “smith”,
grade: 3

}

e Example of MongoDB query:

db.students.find ({grade: {Sgt:3}1});

Ivan Sanchez Milara Programmable Web Project. Spring 2025.

59

s\,

g

OULUN
YLIOPISTO

Ivan Sanchez Milara

TRANSPORT PROTOCOL: HTTP

Programmable Web Project. Spring 2025.

64

UUUUU

IIIIIIIII

65

HTTP

* The Hypertext Transfer Protocol (HTTP):

"an application-level protocol for distributed, collaborative,

hypermedia information systems”
RFC 2616 (http://www.fags.org/rfcs/rfc2616.html)

—HTTP communication usually takes place over TCP/IP connections.
— Most used application protocol in the World Wide Web.

— Also used as a transport protocol for other application protocols, such as SOAP, XML-RPC ...
e HTTP allows bidirectional transfer of resources representations between client
and server.

— Resource: network data object identified by a URI

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Ivan Sanchez Milara

HTTP Request parts

e HTTP request example to http://www.cse.oulu.fi

/
The HTTP method. Here, the client

(web browser) is trying to GET some The path In this example the
i(nformation flro?_") e S path points to the root of the
www.cse.oulu.fi).

- host (just /)

\

REQUEST ~
L|Q —_[GeET /” HTTRP/1.1
NE Keep-Alive: 300

Connection: keep-alive

Host: www.cse.oulu.fi

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:7.0.1) Gecko/20100101 Firefox/7.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,*;g=0.7

The request headers Since the request does not

have entity, it only contains general and request
specific headers.

The entity-body This particular request has no entity body, which means the envelope is
empty! This is typical for a GET request, where all the information needed to complete the
request is in the path and the headers.

Programmable Web Project. Spring 2025.

67

s\,

g

OULUN
YLIOPISTO

HTTP Response parts

e Response Example: http://www.cse.oulu.fi

STATUS
LINE

—

Ivan Sanchez Milara

The HTTP response code. In this case the GET
operation must have succeeded, since the
response code is 200 (“OK”).

The general,

response and entitity headers

HTTP/1.1 200 OK
timeout=15, max=100
Keep-Alive
Wed, 05 Oct 2011 17:26:03 GMT
Apache/2.2.3 (CentOS)
Cookie,User-Agent,Accept-Language
: chunked
text/html; charset=utf-8
<!'DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN“ "http://www.w3.org/TR/htmld/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<meta name="robots" content="index,follow'">
<MainPage - Department of Computer Science and Engineering</title>

(The entity-body. In this case, the entity

body is a HTML document representing
ta web page.

Programmable Web Project. Spring 2025.

69

s\,

gl

OULUN
YLIOPISTO

70

HTTP Methods

Defined in RFC2616

GET Returns the resource representation

HEAD Identical to GET except that the server returns only headers
information in the response

PUT Changes the state of the resource

Creates a new resource when the URL is known

POST Create subordinate resources (no URL known beforehand)

Appends information to the current resource state

DELETE Removes a resource from the server
s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Ivan Sanchez Milara

DATA SERIALIZATION LANGUAGES

Programmable Web Project. Spring 2025.

74

UUUUU

IIIIIIIII

75

JSON and XML

e Formats used for representing data that are heavily used to share data among
heterogeneous peers
— Text format (not binary)
— Language independant

e Although the two of them can be used for M2M and H2M
— XML is more human readable oriented

—JSON is more machine readable oriented

e |n the Programmable Web, they are mainly used for data exchange, although the
may be used also for data storage.

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

JSON

e JavaScript Object Notation

e Based on a subset of the JavaScript Language

e Built on two structures:

— A collection of name/value pairs

— An ordered list of values

e These structures can be mapped to structures in almost any programming

object

array

)
S

Fod [vame Loy

Lo

language
e Example ("widget": |
"debug": "on",
"window": {
"title": "Sample Konfabulator Widget",
"name": "main window",
"width": 500,
"height": 500 }
}}
http://www.json.org
Ivan Sanchez Milara Programmable Web Project. Spring 2025.

76

s\,

g

OULUN

YLIOPISTO

XML

e Extensible Markup Language

— Markup language: system for annotating a document,
e First intended for data publishing
e Markup based in tags:

<tag>content</tag>

e More info
— Appendix 1: Appl_ XML_Basics
— http://www.w3.org/XML/

e Example <widget>

<debug>on</debug>

<window title="Sample Konfabulator Widget">
<name>main_ window</name>
<width>500</width>
<height>500</height>

</window>

</widget> (http://www.json.org)
Ivan Sanchez Milara Programmable Web Project. Spring 2025.

77

s\,

g

OULUN
YLIOPISTO

http://www.w3.org/XML/

78

Hypermedia

e Techniques to integrate content in multiple formats (text, image, audio, video...)
in @ way that all content is connected and accessible to the user.

“Hypertext [...] the simultaneous presentation of information and controls such that
the information becomes the affordance through which the user obtains choices
and selects actions. Machines can follow links when they understand the data
format and the relations type”

Roy Fielding, “A little REST and Relaxation*”

e Hypermedia
— Data

— Hypermedia controls. Indicates what actions could | do next, what are the target
resource to perform the action (link) and how can | perform those actions (http
method / response).

\l.
* http://www.slideshare.net/royfielding/a-little-rest-and-relaxation w

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

http://www.slideshare.net/royfielding/a-little-rest-and-relaxation

79

Hypermedia (HTML)

Get started

Get started About this site

<img alt="Google" height="92" id="hplogo"
src="/images/branding/googlelogo/2x/googlelogo color 272x92dp.png" rel="icon"/>

Google Search I'm Feeling Lucky

=

s\,

Google offered in: espafiol suomi svenska w

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Hypermedia (HTML)

<form action="http://www.youtypeitwepostit.com/messages" method="post">

</form>

Ivan Sanchez Milara

<input type='"text" name="message" value="" required="true" />
<input type="submit" value="Post" />

Messages

Programmable Web Project. Spring 2025.

80

s\,

gl

OULUN
YLIOPISTO

Ivan Sanchez Milara

Hypermedia (Collection+JSON)

Mime type: application/vnd.collection+json
Link: http://amundsen.com/media-types/collection/

{ "collection":

{

"version" : "1.0",
"href" : "http://www.youtypeitwepostit.com/api/",
"items" : [
{ "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",
"data" : [
{ "name" : "text", "value" : "Test." },
{ "name" : "date posted", "value" : "2013-04-22T05:33:58.930z" }
]I
"links" : []
}I
{ "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",
"data" : [
{ "name" : "text", "value" : "Hello." },
{ "name" : "date posted", "value" : "2013-04-20T12:55:59.685z" }
]I
"links" : []
}I
"template" : {
"data" : [
{"prompt" : "Text of message", "name" : "text", "value" : ""}

]

LIST OF HYPERMEDIA FORMATS IN APPENDIX 3: Hypermedia formats

Programmable Web Project. Spring 2025.

81

s\,

gl

OULUN
YLIOPISTO

http://www.iana.org/assignments/media-types/application/vnd.collection+json
http://amundsen.com/media-types/collection/

Ivan Sanchez Milara

Programmable Web Project. Spring 2025.

84

CLIENTS

s\,

gl

OULUN
YLIOPISTO

85

Web browser. An Human Driven client.

e A web browser is the client for ALL websites and web applications.

e TECHNOLOGIES:

— HTML-> Markup language which defines the content to be rendered by the browser
— CSS-> Style sheet language used for describing the look and formatting of a document

— JAVASCRIPT-> Scripting language that listen for events triggered by the users, the network or the host
system and execute predefined actions.

— AJAX-> A set of techniques based on Javascript which enable asynchronous interaction between a web
browser and a server

— WebSocket-> Computer communication protocol over TCP that provides full-duplex communication. It
enables for instance, pub/sub.

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Ivan Sanchez Milara

86

Types of clients

e Human driven clients

— Decisions made by humans. IMPORTANT: how to represent information
to humans

e Crawlers

— It starts following all links iteratively from certain web, executing an
algorithm for each link followed

— E.g. Google

e Monitors
— Checks the state of a resource periodically
— E.g. RSS aggregator

e Scripts

— Simulate an human repeating a determined set of actions (eg. Accessing
sequentially a list of links).

e Agents

— Try to emulate humans who are actively engaged with a problem. Looks
to representation and take autonomous decisions based on states.

s\,

g

Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

90

PROGRAMMABLE WEB

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

Ivan Sanchez Milara

What about current Web APIs (RPC or CRUD)?

e Need excessive documentation

— Exhaustive description of required protocol: HTTP methods, URLs ...

e Integrating a new APl inevitably requires writing custom
software

— Similar applications required totally different clients

e When an application API changes, clients break and have to be
fixed

— For instance a change in the object model in the server or the URL
structure => change in the client.

¢ Clients need to store a lot of information
— Protocol semantics
— Application semantics

Programmable Web Project. Spring 2025.

91

s\,

g

OULUN
YLIOPISTO

92

Web vs Programmable Web

eThe Programmable Web use the same technologies and
communication protocols as the WWW in order to cope
with current problems.

e Current differences
— The data is not delivered necessarily for human consumption
(M2M)

— Nowadays an specific client is needed per application at least
until we solve the problems derivated from the semantic
challenge

—A client can be implemented using any programming language

e Data is encapsulated and transmitted using any serialization languages
such as JSON, XML, HTML, YAML

s\,

g

Ivan Sanchez Milara Programmable Web Project. Spring 2025. OULUN
YLIOPISTO

	Slide 1: Programmable Web Project Part 1: Introduction Spring 2025
	Slide 2: SERVICES AND APIs
	Slide 3: Web Services
	Slide 4: Web Services
	Slide 5: Web Services
	Slide 6: Microservices
	Slide 7: APIs and Web APIs
	Slide 8: Web API
	Slide 9: Website vs Web API
	Slide 11: ARCHITECTURAL STYLES
	Slide 12: Architectural styles
	Slide 13: Architectural styles
	Slide 14: REST and hypermedia
	Slide 15: REST (Representational State Transfer)
	Slide 16: REST (Representational State Transfer)
	Slide 17: REST (Representational State Transfer)
	Slide 18: REST (Representational State Transfer)
	Slide 19: REST (Representational State Transfer)
	Slide 20: Instagram API
	Slide 21: REST APIs
	Slide 22: Hypermedia driven Web APIs
	Slide 23: RPC
	Slide 24: RPC-style Web APIs
	Slide 25: RPC-style Web APIs
	Slide 26: RPC
	Slide 27: GraphQL
	Slide 28: GraphQL
	Slide 29: RPC technologies examples grpc
	Slide 30: OLD SOAP WEB SERVICES
	Slide 31: WSDL
	Slide 32: GRPC intro
	Slide 33: GRPC. Proto
	Slide 34: GRPC. Server
	Slide 35: GRPC. Client
	Slide 36: Types of service methods
	Slide 37: PUB/SUB
	Slide 38: Pub / Sub
	Slide 39: Pub / Sub
	Slide 40: Pub / Sub
	Slide 41: Pub / Sub
	Slide 42: Pub / Sub
	Slide 43: The World Wide Web
	Slide 44: What is the World Wide Web?
	Slide 45: What is the World Wide Web?
	Slide 46: World Wide Web success. Scalability
	Slide 48: TECHNOLOGIES FOR THE WWW
	Slide 49: Client server model
	Slide 50: backend
	Slide 51: Backend
	Slide 52: DATABASES
	Slide 53: Definition
	Slide 54: ACID properties
	Slide 55: Relational – Non-relational
	Slide 56: RDBMS Concepts
	Slide 57: SQL vs NoSQL vs NewSQL
	Slide 58: Examples - Relational
	Slide 59: Examples – Non-relational
	Slide 64: TRANSPORT PROTOCOL: HTTP
	Slide 65: HTTP
	Slide 67: HTTP Request parts
	Slide 69: HTTP Response parts
	Slide 70: HTTP Methods
	Slide 74: Data serialization languages
	Slide 75: JSON and XML
	Slide 76: JSON
	Slide 77: XML
	Slide 78: Hypermedia
	Slide 79: Hypermedia (HTML)
	Slide 80: Hypermedia (HTML)
	Slide 81: Hypermedia (Collection+JSON)
	Slide 84: CLIENTS
	Slide 85: Web browser. An Human Driven client.
	Slide 86: Types of clients
	Slide 90: Programmable web
	Slide 91: What about current Web APIs (RPC or CRUD)?
	Slide 92: Web vs Programmable Web

